Fast charging anode materials for lithium‐ion batteries: current status and perspectives

S Li, K Wang, G Zhang, S Li, Y Xu… - Advanced Functional …, 2022 - Wiley Online Library
With the enormous development of the electric vehicle market, fast charging battery
technology is highly required. However, the slow kinetics and lithium plating under fast …

Li-S batteries: challenges, achievements and opportunities

H Raza, S Bai, J Cheng, S Majumder, H Zhu… - Electrochemical Energy …, 2023 - Springer
To realize a low-carbon economy and sustainable energy supply, the development of
energy storage devices has aroused intensive attention. Lithium-sulfur (Li-S) batteries are …

High entropy liquid electrolytes for lithium batteries

Q Wang, C Zhao, J Wang, Z Yao, S Wang… - Nature …, 2023 - nature.com
High-entropy alloys/compounds have large configurational entropy by introducing multiple
components, showing improved functional properties that exceed those of conventional …

Hard carbon anodes for next‐generation Li‐ion batteries: review and perspective

L Xie, C Tang, Z Bi, M Song, Y Fan… - Advanced Energy …, 2021 - Wiley Online Library
Carbonaceous materials have been accepted as a promising family of anode materials for
lithium‐ion batteries (LIBs) owing to optimal overall performance. Among various emerging …

Challenges and recent advances in high capacity Li‐rich cathode materials for high energy density lithium‐ion batteries

W He, W Guo, H Wu, L Lin, Q Liu, X Han… - Advanced …, 2021 - Wiley Online Library
Li‐rich cathode materials have attracted increasing attention because of their high reversible
discharge capacity (> 250 mA hg− 1), which originates from transition metal (TM) ion redox …

Lithium plating mechanism, detection, and mitigation in lithium-ion batteries

X Lin, K Khosravinia, X Hu, J Li, W Lu - Progress in Energy and …, 2021 - Elsevier
The success of electric vehicles depends largely on energy storage systems. Lithium-ion
batteries have many important properties to meet a wide range of requirements, especially …

Strategies towards enabling lithium metal in batteries: interphases and electrodes

B Horstmann, J Shi, R Amine, M Werres, X He… - Energy & …, 2021 - pubs.rsc.org
Despite the continuous increase in capacity, lithium-ion intercalation batteries are
approaching their performance limits. As a result, research is intensifying on next-generation …

Review of emerging concepts in SEI analysis and artificial SEI membranes for lithium, sodium, and potassium metal battery anodes

W Liu, P Liu, D Mitlin - Advanced Energy Materials, 2020 - Wiley Online Library
Anodes for lithium metal batteries, sodium metal batteries, and potassium metal batteries are
susceptible to failure due to dendrite growth. This review details the structure–chemistry …

Entropy‐driven liquid electrolytes for lithium batteries

Q Wang, C Zhao, Z Yao, J Wang, F Wu… - Advanced …, 2023 - Wiley Online Library
Developing liquid electrolytes with higher kinetics and enhanced interphase stability is one
of the key challenges for lithium batteries. However, the poor solubility of lithium salts in …

Status and challenges facing representative anode materials for rechargeable lithium batteries

L Zhang, C Zhu, S Yu, D Ge, H Zhou - Journal of Energy Chemistry, 2022 - Elsevier
Rechargeable lithium batteries have been widely regarded as a revolutionary technology to
store renewable energy sources and extensively researched in the recent several decades …