A systematic review on imbalanced data challenges in machine learning: Applications and solutions
In machine learning, the data imbalance imposes challenges to perform data analytics in
almost all areas of real-world research. The raw primary data often suffers from the skewed …
almost all areas of real-world research. The raw primary data often suffers from the skewed …
A survey on addressing high-class imbalance in big data
In a majority–minority classification problem, class imbalance in the dataset (s) can
dramatically skew the performance of classifiers, introducing a prediction bias for the …
dramatically skew the performance of classifiers, introducing a prediction bias for the …
Data imbalance in classification: Experimental evaluation
Abstract The advent of Big Data has ushered a new era of scientific breakthroughs. One of
the common issues that affects raw data is class imbalance problem which refers to …
the common issues that affects raw data is class imbalance problem which refers to …
[HTML][HTML] The impact of class imbalance in classification performance metrics based on the binary confusion matrix
A major issue in the classification of class imbalanced datasets involves the determination of
the most suitable performance metrics to be used. In previous work using several examples …
the most suitable performance metrics to be used. In previous work using several examples …
[图书][B] Learning from imbalanced data sets
Learning with imbalanced data refers to the scenario in which the amounts of instances that
represent the concepts in a given problem follow a different distribution. The main issue …
represent the concepts in a given problem follow a different distribution. The main issue …
SMOTE for learning from imbalanced data: progress and challenges, marking the 15-year anniversary
The Synthetic Minority Oversampling Technique (SMOTE) preprocessing algorithm is
considered" de facto" standard in the framework of learning from imbalanced data. This is …
considered" de facto" standard in the framework of learning from imbalanced data. This is …
Resampling imbalanced data for network intrusion detection datasets
S Bagui, K Li - Journal of Big Data, 2021 - Springer
Abstract Machine learning plays an increasingly significant role in the building of Network
Intrusion Detection Systems. However, machine learning models trained with imbalanced …
Intrusion Detection Systems. However, machine learning models trained with imbalanced …
On the class overlap problem in imbalanced data classification
Class imbalance is an active research area in the machine learning community. However,
existing and recent literature showed that class overlap had a higher negative impact on the …
existing and recent literature showed that class overlap had a higher negative impact on the …
Data-driven evolutionary optimization: An overview and case studies
Most evolutionary optimization algorithms assume that the evaluation of the objective and
constraint functions is straightforward. In solving many real-world optimization problems …
constraint functions is straightforward. In solving many real-world optimization problems …
Transforming big data into smart data: An insight on the use of the k‐nearest neighbors algorithm to obtain quality data
The k‐nearest neighbors algorithm is characterized as a simple yet effective data mining
technique. The main drawback of this technique appears when massive amounts of data …
technique. The main drawback of this technique appears when massive amounts of data …