Explainable artificial intelligence for autonomous driving: A comprehensive overview and field guide for future research directions
Autonomous driving has achieved significant milestones in research and development over
the last two decades. There is increasing interest in the field as the deployment of …
the last two decades. There is increasing interest in the field as the deployment of …
Recent advancements in end-to-end autonomous driving using deep learning: A survey
End-to-End driving is a promising paradigm as it circumvents the drawbacks associated with
modular systems, such as their overwhelming complexity and propensity for error …
modular systems, such as their overwhelming complexity and propensity for error …
End-to-end autonomous driving: Challenges and frontiers
The autonomous driving community has witnessed a rapid growth in approaches that
embrace an end-to-end algorithm framework, utilizing raw sensor input to generate vehicle …
embrace an end-to-end algorithm framework, utilizing raw sensor input to generate vehicle …
[PDF][PDF] Drive like a human: Rethinking autonomous driving with large language models
In this paper, we explore the potential of using a large language model (LLM) to understand
the driving environment in a human-like manner and analyze its ability to reason, interpret …
the driving environment in a human-like manner and analyze its ability to reason, interpret …
Vad: Vectorized scene representation for efficient autonomous driving
Autonomous driving requires a comprehensive understanding of the surrounding
environment for reliable trajectory planning. Previous works rely on dense rasterized scene …
environment for reliable trajectory planning. Previous works rely on dense rasterized scene …
Scene as occupancy
Human driver can easily describe the complex traffic scene by visual system. Such an ability
of precise perception is essential for driver's planning. To achieve this, a geometry-aware …
of precise perception is essential for driver's planning. To achieve this, a geometry-aware …
Lmdrive: Closed-loop end-to-end driving with large language models
Despite significant recent progress in the field of autonomous driving modern methods still
struggle and can incur serious accidents when encountering long-tail unforeseen events …
struggle and can incur serious accidents when encountering long-tail unforeseen events …
Gaia-1: A generative world model for autonomous driving
Autonomous driving promises transformative improvements to transportation, but building
systems capable of safely navigating the unstructured complexity of real-world scenarios …
systems capable of safely navigating the unstructured complexity of real-world scenarios …
Think twice before driving: Towards scalable decoders for end-to-end autonomous driving
End-to-end autonomous driving has made impressive progress in recent years. Existing
methods usually adopt the decoupled encoder-decoder paradigm, where the encoder …
methods usually adopt the decoupled encoder-decoder paradigm, where the encoder …
Gpt-driver: Learning to drive with gpt
We present a simple yet effective approach that can transform the OpenAI GPT-3.5 model
into a reliable motion planner for autonomous vehicles. Motion planning is a core challenge …
into a reliable motion planner for autonomous vehicles. Motion planning is a core challenge …