Explainable artificial intelligence for autonomous driving: A comprehensive overview and field guide for future research directions

S Atakishiyev, M Salameh, H Yao, R Goebel - IEEE Access, 2024 - ieeexplore.ieee.org
Autonomous driving has achieved significant milestones in research and development over
the last two decades. There is increasing interest in the field as the deployment of …

Recent advancements in end-to-end autonomous driving using deep learning: A survey

PS Chib, P Singh - IEEE Transactions on Intelligent Vehicles, 2023 - ieeexplore.ieee.org
End-to-End driving is a promising paradigm as it circumvents the drawbacks associated with
modular systems, such as their overwhelming complexity and propensity for error …

End-to-end autonomous driving: Challenges and frontiers

L Chen, P Wu, K Chitta, B Jaeger… - IEEE Transactions on …, 2024 - ieeexplore.ieee.org
The autonomous driving community has witnessed a rapid growth in approaches that
embrace an end-to-end algorithm framework, utilizing raw sensor input to generate vehicle …

[PDF][PDF] Drive like a human: Rethinking autonomous driving with large language models

D Fu, X Li, L Wen, M Dou, P Cai… - Proceedings of the …, 2024 - openaccess.thecvf.com
In this paper, we explore the potential of using a large language model (LLM) to understand
the driving environment in a human-like manner and analyze its ability to reason, interpret …

Vad: Vectorized scene representation for efficient autonomous driving

B Jiang, S Chen, Q Xu, B Liao, J Chen… - Proceedings of the …, 2023 - openaccess.thecvf.com
Autonomous driving requires a comprehensive understanding of the surrounding
environment for reliable trajectory planning. Previous works rely on dense rasterized scene …

Scene as occupancy

W Tong, C Sima, T Wang, L Chen… - Proceedings of the …, 2023 - openaccess.thecvf.com
Human driver can easily describe the complex traffic scene by visual system. Such an ability
of precise perception is essential for driver's planning. To achieve this, a geometry-aware …

Lmdrive: Closed-loop end-to-end driving with large language models

H Shao, Y Hu, L Wang, G Song… - Proceedings of the …, 2024 - openaccess.thecvf.com
Despite significant recent progress in the field of autonomous driving modern methods still
struggle and can incur serious accidents when encountering long-tail unforeseen events …

Gaia-1: A generative world model for autonomous driving

A Hu, L Russell, H Yeo, Z Murez, G Fedoseev… - arXiv preprint arXiv …, 2023 - arxiv.org
Autonomous driving promises transformative improvements to transportation, but building
systems capable of safely navigating the unstructured complexity of real-world scenarios …

Think twice before driving: Towards scalable decoders for end-to-end autonomous driving

X Jia, P Wu, L Chen, J Xie, C He… - Proceedings of the …, 2023 - openaccess.thecvf.com
End-to-end autonomous driving has made impressive progress in recent years. Existing
methods usually adopt the decoupled encoder-decoder paradigm, where the encoder …

Gpt-driver: Learning to drive with gpt

J Mao, Y Qian, H Zhao, Y Wang - arXiv preprint arXiv:2310.01415, 2023 - arxiv.org
We present a simple yet effective approach that can transform the OpenAI GPT-3.5 model
into a reliable motion planner for autonomous vehicles. Motion planning is a core challenge …