Colloquium: Quantum and classical discrete time crystals
The spontaneous breaking of time-translation symmetry has led to the discovery of a new
phase of matter: the discrete time crystal. Discrete time crystals exhibit rigid subharmonic …
phase of matter: the discrete time crystal. Discrete time crystals exhibit rigid subharmonic …
Quantum many-body scars: A quasiparticle perspective
Weakly interacting quasiparticles play a central role in the low-energy description of many
phases of quantum matter. At higher energies, however, quasiparticles cease to be well …
phases of quantum matter. At higher energies, however, quasiparticles cease to be well …
Probing topological spin liquids on a programmable quantum simulator
Quantum spin liquids, exotic phases of matter with topological order, have been a major
focus in physics for the past several decades. Such phases feature long-range quantum …
focus in physics for the past several decades. Such phases feature long-range quantum …
Quantum many-body scars and Hilbert space fragmentation: a review of exact results
S Moudgalya, BA Bernevig… - Reports on Progress in …, 2022 - iopscience.iop.org
The discovery of quantum many-body scars (QMBS) both in Rydberg atom simulators and in
the Affleck–Kennedy–Lieb–Tasaki spin-1 chain model, have shown that a weak violation of …
the Affleck–Kennedy–Lieb–Tasaki spin-1 chain model, have shown that a weak violation of …
Quantum many-body scars and weak breaking of ergodicity
Thermalization is the inevitable fate of many complex quantum systems, whose dynamics
allow them to fully explore the vast configuration space regardless of the initial state—the …
allow them to fully explore the vast configuration space regardless of the initial state—the …
Quantum simulation and computing with Rydberg-interacting qubits
M Morgado, S Whitlock - AVS Quantum Science, 2021 - pubs.aip.org
Arrays of optically trapped atoms excited to Rydberg states have recently emerged as a
competitive physical platform for quantum simulation and computing, where high-fidelity …
competitive physical platform for quantum simulation and computing, where high-fidelity …
Observing non-ergodicity due to kinetic constraints in tilted Fermi-Hubbard chains
The thermalization of isolated quantum many-body systems is deeply related to fundamental
questions of quantum information theory. While integrable or many-body localized systems …
questions of quantum information theory. While integrable or many-body localized systems …
Exploring the regime of fragmentation in strongly tilted Fermi-Hubbard chains
Intriguingly, quantum many-body systems may defy thermalization even without disorder.
One example is so-called fragmented models, where the many-body Hilbert space …
One example is so-called fragmented models, where the many-body Hilbert space …
Ergodicity breaking arising from Hilbert space fragmentation in dipole-conserving Hamiltonians
We show that the combination of charge and dipole conservation—characteristic of fracton
systems—leads to an extensive fragmentation of the Hilbert space, which, in turn, can lead …
systems—leads to an extensive fragmentation of the Hilbert space, which, in turn, can lead …
Observation of many-body scarring in a Bose-Hubbard quantum simulator
The ongoing quest for understanding nonequilibrium dynamics of complex quantum
systems underpins the foundation of statistical physics as well as the development of …
systems underpins the foundation of statistical physics as well as the development of …