Asymptotic analysis of solving an inverse boundary value problem for a nonlinear singularly perturbed time-periodic reaction-diffusion-advection equation

DV Lukyanenko, MA Shishlenin… - Journal of Inverse and Ill …, 2019 - degruyter.com
In this paper, a new asymptotic-numerical approach to solving an inverse boundary value
problem for a nonlinear singularly perturbed parabolic equation with time-periodic …

[HTML][HTML] Solving of the coefficient inverse problem for a nonlinear singularly perturbed two-dimensional reaction–diffusion equation with the location of moving front …

DV Lukyanenko, VB Grigorev, VT Volkov… - … & Mathematics with …, 2019 - Elsevier
Asymptotic-numerical approach to solving the coefficient inverse problem for a nonlinear
singularly perturbed two-dimensional reaction–diffusion equation by knowing the location of …

Asymptotic stability of a stationary solution of a multidimensional reaction–diffusion equation with a discontinuous source

NT Levashova, NN Nefedov, AO Orlov - Computational Mathematics and …, 2019 - Springer
A two-dimensional reaction–diffusion equation in a medium with discontinuous
characteristics is considered; the existence, local uniqueness, and asymptotic stability of its …

Some features of solving an inverse backward problem for a generalized Burgers' equation

DV Lukyanenko, IV Prigorniy… - Journal of Inverse and Ill …, 2020 - degruyter.com
In this paper, we consider an inverse backward problem for a nonlinear singularly perturbed
parabolic equation of the Burgers' type. We demonstrate how a method of asymptotic …

Analytical-numerical approach to describing time-periodic motion of fronts in singularly perturbed reaction–advection–diffusion models

VT Volkov, DV Lukyanenko, NN Nefedov - … Mathematics and Mathematical …, 2019 - Springer
The paper presents an analytical-numerical approach to the study of moving fronts in
singularly perturbed reaction–diffusion–advection models. A method for generating a …

Application of asymptotic analysis for solving the inverse problem of determining the coefficient of linear amplification in Burgers' equation

DV Lukyanenko, VT Volkov, NN Nefedov… - Moscow University …, 2019 - Springer
Asymptotic analysis of a singularly perturbed reaction—diffusion—advection equation,
which is called a Burgers-type equation in applications and has a solution with a sharp …

Асимптотическая устойчивость стационарного решения многомерного уравнения реакция-диффузия с разрывным источником

НТ Левашова, НН Нефедов, АО Орлов - … и математической физики, 2019 - elibrary.ru
Рассматривается двумерное уравнение реакция-диффузия в среде с разрывными
характеристиками, доказываются существование, локальная единственность и …

Existence and stability of a front-type periodic solution of a two-component system of parabolic equations

AA Melnikova - Computational Mathematics and Mathematical Physics, 2019 - Springer
A periodic front-type solution of a singularly perturbed system of parabolic equations is
considered. The system can be considered as a mathematical model describing a sharp …

Существование и устойчивость периодического решения типа фронта в двухкомпонентной системе параболических уравнений

АА Мельникова - Журнал вычислительной математики и …, 2019 - elibrary.ru
Рассматривается периодическое решение типа фронта для сингулярно возмущенной
системы параболических уравнений. Систему можно рассматривать как …

Existence and stability of a stationary solution of the system of diffusion equations in a medium with discontinuous characteristics under various quasimonotonicity …

NT Levashova, BV Tishchenko - Theoretical and Mathematical Physics, 2022 - Springer
Asymptotic analysis is used to study the existence, local uniqueness, and asymptotic stability
in the sense of Lyapunov of a solution of a one-dimensional nonlinear system of reaction …