Deep learning for tomographic image reconstruction

G Wang, JC Ye, B De Man - Nature machine intelligence, 2020 - nature.com
Deep-learning-based tomographic imaging is an important application of artificial
intelligence and a new frontier of machine learning. Deep learning has been widely used in …

[HTML][HTML] A gentle introduction to deep learning in medical image processing

A Maier, C Syben, T Lasser, C Riess - Zeitschrift für Medizinische Physik, 2019 - Elsevier
This paper tries to give a gentle introduction to deep learning in medical image processing,
proceeding from theoretical foundations to applications. We first discuss general reasons for …

Solving inverse problems in medical imaging with score-based generative models

Y Song, L Shen, L Xing, S Ermon - arXiv preprint arXiv:2111.08005, 2021 - arxiv.org
Reconstructing medical images from partial measurements is an important inverse problem
in Computed Tomography (CT) and Magnetic Resonance Imaging (MRI). Existing solutions …

NeRP: implicit neural representation learning with prior embedding for sparsely sampled image reconstruction

L Shen, J Pauly, L Xing - IEEE Transactions on Neural …, 2022 - ieeexplore.ieee.org
Image reconstruction is an inverse problem that solves for a computational image based on
sampled sensor measurement. Sparsely sampled image reconstruction poses additional …

Image reconstruction is a new frontier of machine learning

G Wang, JC Ye, K Mueller… - IEEE transactions on …, 2018 - ieeexplore.ieee.org
Over past several years, machine learning, or more generally artificial intelligence, has
generated overwhelming research interest and attracted unprecedented public attention. As …

DOLCE: A model-based probabilistic diffusion framework for limited-angle ct reconstruction

J Liu, R Anirudh, JJ Thiagarajan, S He… - Proceedings of the …, 2023 - openaccess.thecvf.com
Abstract Limited-Angle Computed Tomography (LACT) is a non-destructive 3D imaging
technique used in a variety of applications ranging from security to medicine. The limited …

Learning to reconstruct computed tomography images directly from sinogram data under a variety of data acquisition conditions

Y Li, K Li, C Zhang, J Montoya… - IEEE transactions on …, 2019 - ieeexplore.ieee.org
Computed tomography (CT) is widely used in medical diagnosis and non-destructive
detection. Image reconstruction in CT aims to accurately recover pixel values from measured …

Deep learning for massive MIMO uplink detectors

MA Albreem, AH Alhabbash… - … Surveys & Tutorials, 2021 - ieeexplore.ieee.org
Detection techniques for massive multiple-input multiple-output (MIMO) have gained a lot of
attention in both academia and industry. Detection techniques have a significant impact on …

Coil: Coordinate-based internal learning for tomographic imaging

Y Sun, J Liu, M Xie, B Wohlberg… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
We propose Coordinate-based Internal Learning (CoIL) as a new deep-learning (DL)
methodology for continuous representation of measurements. Unlike traditional DL methods …

Radon inversion via deep learning

J He, Y Wang, J Ma - IEEE transactions on medical imaging, 2020 - ieeexplore.ieee.org
The Radon transform is widely used in physical and life sciences, and one of its major
applications is in medical X-ray computed tomography (CT), which is significantly important …