Deep learning in drug discovery: an integrative review and future challenges

H Askr, E Elgeldawi, H Aboul Ella… - Artificial Intelligence …, 2023 - Springer
Recently, using artificial intelligence (AI) in drug discovery has received much attention
since it significantly shortens the time and cost of developing new drugs. Deep learning (DL) …

Artificial intelligence to deep learning: machine intelligence approach for drug discovery

R Gupta, D Srivastava, M Sahu, S Tiwari, RK Ambasta… - Molecular …, 2021 - Springer
Drug designing and development is an important area of research for pharmaceutical
companies and chemical scientists. However, low efficacy, off-target delivery, time …

Artificial intelligence for drug discovery: Resources, methods, and applications

W Chen, X Liu, S Zhang, S Chen - Molecular Therapy-Nucleic Acids, 2023 - cell.com
Conventional wet laboratory testing, validations, and synthetic procedures are costly and
time-consuming for drug discovery. Advancements in artificial intelligence (AI) techniques …

AI in drug discovery and its clinical relevance

R Qureshi, M Irfan, TM Gondal, S Khan, J Wu, MU Hadi… - Heliyon, 2023 - cell.com
The COVID-19 pandemic has emphasized the need for novel drug discovery process.
However, the journey from conceptualizing a drug to its eventual implementation in clinical …

Artificial intelligence in cancer target identification and drug discovery

Y You, X Lai, Y Pan, H Zheng, J Vera, S Liu… - … and Targeted Therapy, 2022 - nature.com
Artificial intelligence is an advanced method to identify novel anticancer targets and discover
novel drugs from biology networks because the networks can effectively preserve and …

Accurate prediction of molecular properties and drug targets using a self-supervised image representation learning framework

X Zeng, H Xiang, L Yu, J Wang, K Li… - Nature Machine …, 2022 - nature.com
The clinical efficacy and safety of a drug is determined by its molecular properties and
targets in humans. However, proteome-wide evaluation of all compounds in humans, or …

Interactiongraphnet: A novel and efficient deep graph representation learning framework for accurate protein–ligand interaction predictions

D Jiang, CY Hsieh, Z Wu, Y Kang, J Wang… - Journal of medicinal …, 2021 - ACS Publications
Accurate quantification of protein–ligand interactions remains a key challenge to structure-
based drug design. However, traditional machine learning (ML)-based methods based on …

Contrastive learning in protein language space predicts interactions between drugs and protein targets

R Singh, S Sledzieski, B Bryson… - Proceedings of the …, 2023 - National Acad Sciences
Sequence-based prediction of drug–target interactions has the potential to accelerate drug
discovery by complementing experimental screens. Such computational prediction needs to …

Deep learning for drug repurposing: Methods, databases, and applications

X Pan, X Lin, D Cao, X Zeng, PS Yu… - Wiley …, 2022 - Wiley Online Library
Drug development is time‐consuming and expensive. Repurposing existing drugs for new
therapies is an attractive solution that accelerates drug development at reduced …

Graph neural network approaches for drug-target interactions

Z Zhang, L Chen, F Zhong, D Wang, J Jiang… - Current Opinion in …, 2022 - Elsevier
Developing new drugs remains prohibitively expensive, time-consuming, and often involves
safety issues. Accurate prediction of drug-target interactions (DTIs) can guide the drug …