If deep learning is the answer, what is the question?

A Saxe, S Nelli, C Summerfield - Nature Reviews Neuroscience, 2021 - nature.com
Neuroscience research is undergoing a minor revolution. Recent advances in machine
learning and artificial intelligence research have opened up new ways of thinking about …

Machine learning for quantum matter

J Carrasquilla - Advances in Physics: X, 2020 - Taylor & Francis
Quantum matter, the research field studying phases of matter whose properties are
intrinsically quantum mechanical, draws from areas as diverse as hard condensed matter …

Hidden progress in deep learning: Sgd learns parities near the computational limit

B Barak, B Edelman, S Goel… - Advances in …, 2022 - proceedings.neurips.cc
There is mounting evidence of emergent phenomena in the capabilities of deep learning
methods as we scale up datasets, model sizes, and training times. While there are some …

Gradient starvation: A learning proclivity in neural networks

M Pezeshki, O Kaba, Y Bengio… - Advances in …, 2021 - proceedings.neurips.cc
We identify and formalize a fundamental gradient descent phenomenon resulting in a
learning proclivity in over-parameterized neural networks. Gradient Starvation arises when …

Learning single-index models with shallow neural networks

A Bietti, J Bruna, C Sanford… - Advances in Neural …, 2022 - proceedings.neurips.cc
Single-index models are a class of functions given by an unknown univariate``link''function
applied to an unknown one-dimensional projection of the input. These models are …

Benign, tempered, or catastrophic: Toward a refined taxonomy of overfitting

N Mallinar, J Simon, A Abedsoltan… - Advances in …, 2022 - proceedings.neurips.cc
The practical success of overparameterized neural networks has motivated the recent
scientific study of\emph {interpolating methods}--learning methods which are able fit their …

High-dimensional limit theorems for sgd: Effective dynamics and critical scaling

G Ben Arous, R Gheissari… - Advances in Neural …, 2022 - proceedings.neurips.cc
We study the scaling limits of stochastic gradient descent (SGD) with constant step-size in
the high-dimensional regime. We prove limit theorems for the trajectories of summary …

Neural collapse: A review on modelling principles and generalization

V Kothapalli - arXiv preprint arXiv:2206.04041, 2022 - arxiv.org
Deep classifier neural networks enter the terminal phase of training (TPT) when training
error reaches zero and tend to exhibit intriguing Neural Collapse (NC) properties. Neural …

Implicit regularization in deep learning may not be explainable by norms

N Razin, N Cohen - Advances in neural information …, 2020 - proceedings.neurips.cc
Mathematically characterizing the implicit regularization induced by gradient-based
optimization is a longstanding pursuit in the theory of deep learning. A widespread hope is …

Modeling the influence of data structure on learning in neural networks: The hidden manifold model

S Goldt, M Mézard, F Krzakala, L Zdeborová - Physical Review X, 2020 - APS
Understanding the reasons for the success of deep neural networks trained using stochastic
gradient-based methods is a key open problem for the nascent theory of deep learning. The …