[HTML][HTML] Data augmentation: A comprehensive survey of modern approaches
A Mumuni, F Mumuni - Array, 2022 - Elsevier
To ensure good performance, modern machine learning models typically require large
amounts of quality annotated data. Meanwhile, the data collection and annotation processes …
amounts of quality annotated data. Meanwhile, the data collection and annotation processes …
Deep long-tailed learning: A survey
Deep long-tailed learning, one of the most challenging problems in visual recognition, aims
to train well-performing deep models from a large number of images that follow a long-tailed …
to train well-performing deep models from a large number of images that follow a long-tailed …
Dynamic neural networks: A survey
Dynamic neural network is an emerging research topic in deep learning. Compared to static
models which have fixed computational graphs and parameters at the inference stage …
models which have fixed computational graphs and parameters at the inference stage …
Free lunch for few-shot learning: Distribution calibration
Learning from a limited number of samples is challenging since the learned model can
easily become overfitted based on the biased distribution formed by only a few training …
easily become overfitted based on the biased distribution formed by only a few training …
Source-free domain adaptation via distribution estimation
Abstract Domain Adaptation aims to transfer the knowledge learned from a labeled source
domain to an unlabeled target domain whose data distributions are different. However, the …
domain to an unlabeled target domain whose data distributions are different. However, the …
The majority can help the minority: Context-rich minority oversampling for long-tailed classification
The problem of class imbalanced data is that the generalization performance of the classifier
deteriorates due to the lack of data from minority classes. In this paper, we propose a novel …
deteriorates due to the lack of data from minority classes. In this paper, we propose a novel …
Uncertainty modeling for out-of-distribution generalization
Though remarkable progress has been achieved in various vision tasks, deep neural
networks still suffer obvious performance degradation when tested in out-of-distribution …
networks still suffer obvious performance degradation when tested in out-of-distribution …
COSTA: covariance-preserving feature augmentation for graph contrastive learning
Graph contrastive learning (GCL) improves graph representation learning, leading to SOTA
on various downstream tasks. The graph augmentation step is a vital but scarcely studied …
on various downstream tasks. The graph augmentation step is a vital but scarcely studied …
Spectral feature augmentation for graph contrastive learning and beyond
Although augmentations (eg, perturbation of graph edges, image crops) boost the efficiency
of Contrastive Learning (CL), feature level augmentation is another plausible …
of Contrastive Learning (CL), feature level augmentation is another plausible …
Metasaug: Meta semantic augmentation for long-tailed visual recognition
Real-world training data usually exhibits long-tailed distribution, where several majority
classes have a significantly larger number of samples than the remaining minority classes …
classes have a significantly larger number of samples than the remaining minority classes …