From google gemini to openai q*(q-star): A survey of reshaping the generative artificial intelligence (ai) research landscape

TR McIntosh, T Susnjak, T Liu, P Watters… - arXiv preprint arXiv …, 2023 - arxiv.org
This comprehensive survey explored the evolving landscape of generative Artificial
Intelligence (AI), with a specific focus on the transformative impacts of Mixture of Experts …

Small data challenges for intelligent prognostics and health management: a review

C Li, S Li, Y Feng, K Gryllias, F Gu, M Pecht - Artificial Intelligence Review, 2024 - Springer
Prognostics and health management (PHM) is critical for enhancing equipment reliability
and reducing maintenance costs, and research on intelligent PHM has made significant …

Dual-threshold attention-guided GAN and limited infrared thermal images for rotating machinery fault diagnosis under speed fluctuation

H Shao, W Li, B Cai, J Wan, Y Xiao… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
End-to-end intelligent diagnosis of rotating machinery under speed fluctuation and limited
samples is challenging in industrial practice. The existing limited samples methods usually …

Few shot cross equipment fault diagnosis method based on parameter optimization and feature mertic

H Tao, L Cheng, J Qiu… - Measurement Science and …, 2022 - iopscience.iop.org
With the rapid development of industrial informatization and deep learning technology,
modern data-driven fault diagnosis (MIFD) methods based on deep learning have been …

Attention-based deep meta-transfer learning for few-shot fine-grained fault diagnosis

C Li, S Li, H Wang, F Gu, AD Ball - Knowledge-Based Systems, 2023 - Elsevier
Deep learning-based fault diagnosis methods have made tremendous progress in recent
years; however, most of these methods are coarse grained and data demanding that cannot …

Intelligent machinery fault diagnosis with event-based camera

X Li, S Yu, Y Lei, N Li, B Yang - IEEE Transactions on Industrial …, 2023 - ieeexplore.ieee.org
Event-based cameras are the emerging bioinspired technology in vision sensing. Different
from the traditional standard cameras, the event-based cameras asynchronously record the …

Prior knowledge-embedded meta-transfer learning for few-shot fault diagnosis under variable operating conditions

Z Lei, P Zhang, Y Chen, K Feng, G Wen, Z Liu… - … Systems and Signal …, 2023 - Elsevier
In recent years, intelligent fault diagnosis based on deep learning has achieved vigorous
development thanks to its powerful feature representation ability. However, scarcity of high …

Digital twin-assisted enhanced meta-transfer learning for rolling bearing fault diagnosis

L Ma, B Jiang, L Xiao, N Lu - Mechanical Systems and Signal Processing, 2023 - Elsevier
Fault diagnosis of bearing under variable working conditions is widely required in practice,
and the combination of working conditions and fault fluctuations increases the complexity of …

A comprehensive survey of sparse regularization: Fundamental, state-of-the-art methodologies and applications on fault diagnosis

Q Li - Expert Systems with Applications, 2023 - Elsevier
Sparse regularization has been attracting much attention in industrial applications over the
past few decades. By exploiting the latent data structure in low-dimensional subspaces, a …

Few-shot learning for fault diagnosis with a dual graph neural network

H Wang, J Wang, Y Zhao, Q Liu, M Liu… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Mechanical fault diagnosis is crucial to ensure the safe operations of equipment in intelligent
manufacturing systems. Deep learning-based methods have been recently developed for …