Additive Spanner Lower Bounds with Optimal Inner Graph Structure
We construct $ n $-node graphs on which any $ O (n) $-size spanner has additive error at
least $+\Omega (n^{3/17}) $, improving on the previous best lower bound of $\Omega …
least $+\Omega (n^{3/17}) $, improving on the previous best lower bound of $\Omega …
Lightweight Near-Additive Spanners
An $(\alpha,\beta) $-spanner of a weighted graph $ G=(V, E) $, is a subgraph $ H $ such that
for every $ u, v\in V $, $ d_G (u, v)\le d_H (u, v)\le\alpha\cdot d_G (u, v)+\beta $. The main …
for every $ u, v\in V $, $ d_G (u, v)\le d_H (u, v)\le\alpha\cdot d_G (u, v)+\beta $. The main …