[HTML][HTML] A review of tracking and trajectory prediction methods for autonomous driving

F Leon, M Gavrilescu - Mathematics, 2021 - mdpi.com
This paper provides a literature review of some of the most important concepts, techniques,
and methodologies used within autonomous car systems. Specifically, we focus on two …

Scenario understanding and motion prediction for autonomous vehicles—review and comparison

P Karle, M Geisslinger, J Betz… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Scenario understanding and motion prediction are essential components for completely
replacing human drivers and for enabling highly and fully automated driving (SAE-Level …

Planning-oriented autonomous driving

Y Hu, J Yang, L Chen, K Li, C Sima… - Proceedings of the …, 2023 - openaccess.thecvf.com
Modern autonomous driving system is characterized as modular tasks in sequential order,
ie, perception, prediction, and planning. In order to perform a wide diversity of tasks and …

A survey on trajectory-prediction methods for autonomous driving

Y Huang, J Du, Z Yang, Z Zhou… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
In order to drive safely in a dynamic environment, autonomous vehicles should be able to
predict the future states of traffic participants nearby, especially surrounding vehicles, similar …

Query-centric trajectory prediction

Z Zhou, J Wang, YH Li… - Proceedings of the IEEE …, 2023 - openaccess.thecvf.com
Predicting the future trajectories of surrounding agents is essential for autonomous vehicles
to operate safely. This paper presents QCNet, a modeling framework toward pushing the …

Motion transformer with global intention localization and local movement refinement

S Shi, L Jiang, D Dai, B Schiele - Advances in Neural …, 2022 - proceedings.neurips.cc
Predicting multimodal future behavior of traffic participants is essential for robotic vehicles to
make safe decisions. Existing works explore to directly predict future trajectories based on …

Hivt: Hierarchical vector transformer for multi-agent motion prediction

Z Zhou, L Ye, J Wang, K Wu… - Proceedings of the IEEE …, 2022 - openaccess.thecvf.com
Accurately predicting the future motions of surrounding traffic agents is critical for the safety
of autonomous vehicles. Recently, vectorized approaches have dominated the motion …

Safety-enhanced autonomous driving using interpretable sensor fusion transformer

H Shao, L Wang, R Chen, H Li… - Conference on Robot …, 2023 - proceedings.mlr.press
Large-scale deployment of autonomous vehicles has been continually delayed due to safety
concerns. On the one hand, comprehensive scene understanding is indispensable, a lack of …

Vectormapnet: End-to-end vectorized hd map learning

Y Liu, T Yuan, Y Wang, Y Wang… - … on Machine Learning, 2023 - proceedings.mlr.press
Autonomous driving systems require High-Definition (HD) semantic maps to navigate
around urban roads. Existing solutions approach the semantic mapping problem by offline …

Densetnt: End-to-end trajectory prediction from dense goal sets

J Gu, C Sun, H Zhao - Proceedings of the IEEE/CVF …, 2021 - openaccess.thecvf.com
Due to the stochasticity of human behaviors, predicting the future trajectories of road agents
is challenging for autonomous driving. Recently, goal-based multi-trajectory prediction …