Simultaneous estimation and group identification for network vector autoregressive model with heterogeneous nodes

X Zhu, G Xu, J Fan - Journal of Econometrics, 2023 - Elsevier
Individuals or companies in a large social or financial network often display rather
heterogeneous behaviors for various reasons. In this work, we propose a network vector …

Identifying latent group structures in spatial dynamic panels

L Su, W Wang, X Xu - Journal of Econometrics, 2023 - Elsevier
This paper considers the identification of latent group structures in spatial dynamic panels.
We follow Lee and Yu (2010) and consider a rich spatial dynamic panel data (SDPD) model …

[PDF][PDF] Poisson network autoregression

M Armillotta, K Fokianos - arXiv preprint arXiv:2104.06296, 2021 - researchgate.net
We consider network autoregressive models for count data with a non-random
neighborhood structure. The main methodological contribution is the development of …

Unveiling Venice's hotels competition networks from dynamic pricing digital market

M Armillotta, K Fokianos… - Journal of the Royal …, 2024 - academic.oup.com
We study the dynamic price competition of hotels in Venice using publicly available data
scraped from an online travel agency. This study poses two main challenges. First, the time …

Estimating conditional value-at-risk with nonstationary quantile predictive regression models

C Katsouris - arXiv preprint arXiv:2311.08218, 2023 - arxiv.org
This paper develops an asymptotic distribution theory for a two-stage instrumentation
estimation approach in quantile predictive regressions when both generated covariates and …

Grouped spatial autoregressive model

D Huang, W Hu, B Jing, B Zhang - Computational Statistics & Data Analysis, 2023 - Elsevier
With the development of the internet, network data with replications can be collected at
different time points. The spatial autoregressive panel (SARP) model is a useful tool for …

Variational Bayesian inference for network autoregression models

WT Lai, RB Chen, Y Chen, T Koch - Computational Statistics & Data …, 2022 - Elsevier
We develop a variational Bayesian (VB) approach for estimating large-scale dynamic
network models in the network autoregression framework. The VB approach allows for the …

Softplus negative binomial network autoregression

X Guo, F Zhu - Stat, 2024 - Wiley Online Library
Modelling multivariate time series of counts in a parsimonious way is a popular topic. In this
paper, we consider an integer‐valued network autoregressive model with a non‐random …

A latent space model for multivariate count data time series analysis

H Kaur, R Rastelli - arXiv preprint arXiv:2408.13162, 2024 - arxiv.org
Motivated by a dataset of burglaries in Chicago, USA, we introduce a novel framework to
analyze time series of count data combining common multivariate time series models with …

Dynamic network quantile regression model

X Xu, W Wang, Y Shin, C Zheng - Journal of Business & Economic …, 2024 - Taylor & Francis
We propose a dynamic network quantile regression model to investigate the quantile
connectedness using a predetermined network information. We extend the existing network …