The Kato square root problem on locally uniform domains

S Bechtel, M Egert, R Haller-Dintelmann - Advances in Mathematics, 2020 - Elsevier
We obtain the Kato square root estimate for second order elliptic operators in divergence
form with mixed boundary conditions on an open and possibly unbounded set in R d under …

The Kato square root problem follows from an extrapolation property of the Laplacian

M Egert, R Haller-Dintelmann, P Tolksdorf - 2016 - projecteuclid.org
On a domain Ω⊆R^d we consider second-order elliptic systems in divergence-form with
bounded complex coefficients, realized via a sesquilinear form with domain …

Hardy spaces adapted to elliptic operators on open sets

S Bechtel, T Böhnlein - arXiv preprint arXiv:2311.13316, 2023 - arxiv.org
Let $ L=-\mathrm {div}(A\nabla\cdot) $ be an elliptic operator defined on an open subset of
$\mathbb {R}^ d $, complemented with mixed boundary conditions. Under suitable …

Behaviour at infinity for solutions of a mixed boundary value problem via inversion

J Björn, A Mwasa - arXiv preprint arXiv:2103.15645, 2021 - arxiv.org
We study a mixed boundary value problem for the quasilinear elliptic equation $\mathop {\rm
div}\mathcal {A}(x,\nabla u (x))= 0$ in an open infinite circular half-cylinder with prescribed …

On mixed boundary conditions, function spaces, and Kato's square root property

S Bechtel - 2022 - tuprints.ulb.tu-darmstadt.de
On mixed boundary conditions, function spaces, and Kato’s square root property Page 1 On
mixed boundary conditions, function spaces, and Kato’s square root property Vom Fachbereich …