Cohomological -independence for Higgs bundles and Gopakumar–Vafa invariants

T Kinjo, N Koseki - Journal of the European Mathematical Society, 2024 - ems.press
The aim of this paper is two-fold. Firstly, we prove Toda's-independence conjecture for
Gopakumar–Vafa invariants of arbitrary local curves. Secondly, following Davison's work, we …

[PDF][PDF] Higgs bundles--Recent applications

LP Schaposnik - arXiv preprint arXiv:1909.10543, 2019 - arxiv.org
arXiv:1909.10543v1 [math.DG] 23 Sep 2019 Page 1 Higgs bundles – Recent applications
Laura P. Schaposnik ∗ September 25, 2019 Introduction This note is dedicated to introducing …

Stable maps to Looijenga pairs

P Bousseau, A Brini, M van Garrel - Geometry & Topology, 2024 - msp.org
A log Calabi–Yau surface with maximal boundary, or Looijenga pair, is a pair (Y, D) with Y a
smooth rational projective complex surface and D= D 1+⋯+ D l∈|− KY| an anticanonical …

Introduction to gauge theory

A Haydys - arXiv preprint arXiv:1910.10436, 2019 - arxiv.org
This is lecture notes for a course given at the PCMI Summer School" Quantum Field Theory
and Manifold Invariants"(July 1--July 5, 2019). I describe basics of gauge-theoretic approach …

[PDF][PDF] Geometry & Topology

P BOUSSEAU, A BRINI, M VAN GARREL - pure-oai.bham.ac.uk
A log Calabi–Yau surface with maximal boundary, or Looijenga pair, is a pair YD/WD. Y;
D/consisting of a smooth rational projective complex surface Y and an anticanonical singular …

[PDF][PDF] Stable maps to Looijenga pairs

A Brini, P Bousseau, M van Garrel - Geometry and Topology, 2024 - eprints.whiterose.ac.uk
A log Calabi–Yau surface with maximal boundary, or Looijenga pair, is a pair YD/WD. Y;
D/consisting of a smooth rational projective complex surface Y and an anticanonical singular …