An extended Petviashvili method for the numerical generation of traveling and localized waves
J Álvarez, A Durán - Communications in Nonlinear Science and Numerical …, 2014 - Elsevier
A family of fixed-point iterations is proposed for the numerical computation of traveling
waves and localized ground states. The methods are extended versions of Petviashvili type …
waves and localized ground states. The methods are extended versions of Petviashvili type …
Projected explicit Lawson methods for the integration of Schrödinger equation
B Cano, A González‐Pachón - Numerical Methods for Partial …, 2015 - Wiley Online Library
In this article, it is proved that explicit Lawson methods, when projected onto one of the
invariants of nonlinear Schrödinger equation (norm) are also automatically projected onto …
invariants of nonlinear Schrödinger equation (norm) are also automatically projected onto …
Numerical detection and generation of solitary waves for a nonlinear wave equation
I Alonso-Mallo, N Reguera - Wave Motion, 2015 - Elsevier
This paper presents an automatic algorithm for detecting and generating solitary waves of
nonlinear wave equations. With this purpose, dynamic simulations are carried out, the …
nonlinear wave equations. With this purpose, dynamic simulations are carried out, the …
Long-time simulations of nonlinear Schrödinger-type equations using step size exceeding threshold of numerical instability
TI Lakoba - Journal of Scientific Computing, 2017 - Springer
We propose an exponential time-differencing method based on the leapfrog scheme for
numerical integration of the generalized nonlinear Schrödinger-type equations. The key …
numerical integration of the generalized nonlinear Schrödinger-type equations. The key …
A self-adjusting algorithm for solitary wave simulations
I Alonso-Mallo, N Reguera - International Journal of Computer …, 2013 - Taylor & Francis
We introduce a practical algorithm to automate the simulations of solitary wave solutions of
some nonlinear dispersive wave equations. The full discretization consists of a spatial …
some nonlinear dispersive wave equations. The full discretization consists of a spatial …
Integración numérica exponiencial de la ecuación de Schrödinger no lineal
A González Pachón - 2015 - uvadoc.uva.es
El presente trabajo tiene por objeto la integración numérica exponencial de la ecuación de
Schrödinger no lineal tras llevar a cabo una discretización pseudoespectral de la parte …
Schrödinger no lineal tras llevar a cabo una discretización pseudoespectral de la parte …
Long Time Numerical Approximation of Coherent-Structure Solutions of the Cubic Schrödinger Equation
The purpose of this work is to determine suitable numerical methods to simulate the
evolution of coherent structures for the cubic nonlinear Schrödinger equation with Dirichlet …
evolution of coherent structures for the cubic nonlinear Schrödinger equation with Dirichlet …