A comprehensive survey on test-time adaptation under distribution shifts

J Liang, R He, T Tan - International Journal of Computer Vision, 2024 - Springer
Abstract Machine learning methods strive to acquire a robust model during the training
process that can effectively generalize to test samples, even in the presence of distribution …

Source-free unsupervised domain adaptation: A survey

Y Fang, PT Yap, W Lin, H Zhu, M Liu - Neural Networks, 2024 - Elsevier
Unsupervised domain adaptation (UDA) via deep learning has attracted appealing attention
for tackling domain-shift problems caused by distribution discrepancy across different …

C-sfda: A curriculum learning aided self-training framework for efficient source free domain adaptation

N Karim, NC Mithun, A Rajvanshi… - Proceedings of the …, 2023 - openaccess.thecvf.com
Unsupervised domain adaptation (UDA) approaches focus on adapting models trained on a
labeled source domain to an unlabeled target domain. In contrast to UDA, source-free …

A comprehensive survey on source-free domain adaptation

J Li, Z Yu, Z Du, L Zhu, HT Shen - IEEE Transactions on Pattern …, 2024 - ieeexplore.ieee.org
Over the past decade, domain adaptation has become a widely studied branch of transfer
learning which aims to improve performance on target domains by leveraging knowledge …

Guiding pseudo-labels with uncertainty estimation for source-free unsupervised domain adaptation

M Litrico, A Del Bue, P Morerio - Proceedings of the IEEE …, 2023 - openaccess.thecvf.com
Abstract Standard Unsupervised Domain Adaptation (UDA) methods assume the availability
of both source and target data during the adaptation. In this work, we investigate Source-free …

Proxymix: Proxy-based mixup training with label refinery for source-free domain adaptation

Y Ding, L Sheng, J Liang, A Zheng, R He - Neural Networks, 2023 - Elsevier
Due to privacy concerns and data transmission issues, Source-free Unsupervised Domain
Adaptation (SFDA) has gained popularity. It exploits pre-trained source models, rather than …

Consistency regularization for generalizable source-free domain adaptation

L Tang, K Li, C He, Y Zhang… - Proceedings of the IEEE …, 2023 - openaccess.thecvf.com
Source-free domain adaptation (SFDA) aims to adapt a well-trained source model to an
unlabelled target domain without accessing the source dataset, making it applicable in a …

Universal domain adaptation for remote sensing image scene classification

Q Xu, Y Shi, X Yuan, XX Zhu - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
The domain adaptation (DA) approaches available to date are usually not well suited for
practical DA scenarios of remote sensing image classification since these methods (such as …

Activate and reject: towards safe domain generalization under category shift

C Chen, L Tang, L Tao, HY Zhou… - Proceedings of the …, 2023 - openaccess.thecvf.com
Albeit the notable performance on in-domain test points, it is non-trivial for deep neural
networks to attain satisfactory accuracy when deploying in the open world, where novel …

Black-box unsupervised domain adaptation with bi-directional atkinson-shiffrin memory

J Zhang, J Huang, X Jiang, S Lu - Proceedings of the IEEE …, 2023 - openaccess.thecvf.com
Black-box unsupervised domain adaptation (UDA) learns with source predictions of target
data without accessing either source data or source models during training, and it has clear …