A review on learning to solve combinatorial optimisation problems in manufacturing

C Zhang, Y Wu, Y Ma, W Song, Z Le… - IET Collaborative …, 2023 - Wiley Online Library
An efficient manufacturing system is key to maintaining a healthy economy today. With the
rapid development of science and technology and the progress of human society, the …

Neural combinatorial optimization with heavy decoder: Toward large scale generalization

F Luo, X Lin, F Liu, Q Zhang… - Advances in Neural …, 2023 - proceedings.neurips.cc
Neural combinatorial optimization (NCO) is a promising learning-based approach for solving
challenging combinatorial optimization problems without specialized algorithm design by …

Neurolkh: Combining deep learning model with lin-kernighan-helsgaun heuristic for solving the traveling salesman problem

L Xin, W Song, Z Cao, J Zhang - Advances in Neural …, 2021 - proceedings.neurips.cc
We present NeuroLKH, a novel algorithm that combines deep learning with the strong
traditional heuristic Lin-Kernighan-Helsgaun (LKH) for solving Traveling Salesman Problem …

Learning to iteratively solve routing problems with dual-aspect collaborative transformer

Y Ma, J Li, Z Cao, W Song, L Zhang… - Advances in Neural …, 2021 - proceedings.neurips.cc
Recently, Transformer has become a prevailing deep architecture for solving vehicle routing
problems (VRPs). However, it is less effective in learning improvement models for VRP …

Dimes: A differentiable meta solver for combinatorial optimization problems

R Qiu, Z Sun, Y Yang - Advances in Neural Information …, 2022 - proceedings.neurips.cc
Recently, deep reinforcement learning (DRL) models have shown promising results in
solving NP-hard Combinatorial Optimization (CO) problems. However, most DRL solvers …

DeepACO: neural-enhanced ant systems for combinatorial optimization

H Ye, J Wang, Z Cao, H Liang… - Advances in Neural …, 2024 - proceedings.neurips.cc
Abstract Ant Colony Optimization (ACO) is a meta-heuristic algorithm that has been
successfully applied to various Combinatorial Optimization Problems (COPs). Traditionally …

Learning collaborative policies to solve np-hard routing problems

M Kim, J Park - Advances in Neural Information …, 2021 - proceedings.neurips.cc
Recently, deep reinforcement learning (DRL) frameworks have shown potential for solving
NP-hard routing problems such as the traveling salesman problem (TSP) without problem …

Learning generalizable models for vehicle routing problems via knowledge distillation

J Bi, Y Ma, J Wang, Z Cao, J Chen… - Advances in Neural …, 2022 - proceedings.neurips.cc
Recent neural methods for vehicle routing problems always train and test the deep models
on the same instance distribution (ie, uniform). To tackle the consequent cross-distribution …

Sym-nco: Leveraging symmetricity for neural combinatorial optimization

M Kim, J Park, J Park - Advances in Neural Information …, 2022 - proceedings.neurips.cc
Deep reinforcement learning (DRL)-based combinatorial optimization (CO) methods (ie,
DRL-NCO) have shown significant merit over the conventional CO solvers as DRL-NCO is …

Learning to search feasible and infeasible regions of routing problems with flexible neural k-opt

Y Ma, Z Cao, YM Chee - Advances in Neural Information …, 2024 - proceedings.neurips.cc
In this paper, we present Neural k-Opt (NeuOpt), a novel learning-to-search (L2S) solver for
routing problems. It learns to perform flexible k-opt exchanges based on a tailored action …