Recent advances and strategies toward polysulfides shuttle inhibition for high‐performance Li–S batteries

Y Huang, L Lin, C Zhang, L Liu, Y Li, Z Qiao… - Advanced …, 2022 - Wiley Online Library
Abstract Lithium–sulfur (Li–S) batteries are regarded as the most promising next‐generation
energy storage systems due to their high energy density and cost‐effectiveness. However …

A review on theoretical models for lithium–sulfur battery cathodes

S Feng, ZH Fu, X Chen, Q Zhang - InfoMat, 2022 - Wiley Online Library
Abstract Lithium–sulfur (Li–S) batteries have been considered as promising battery systems
due to their huge advantages on theoretical energy density and rich resources. However …

Advances in lithium–sulfur batteries: from academic research to commercial viability

Y Chen, T Wang, H Tian, D Su, Q Zhang… - Advanced …, 2021 - Wiley Online Library
Lithium‐ion batteries, which have revolutionized portable electronics over the past three
decades, were eventually recognized with the 2019 Nobel Prize in chemistry. As the energy …

Opportunities of flexible and portable electrochemical devices for energy storage: expanding the spotlight onto semi-solid/solid electrolytes

X Fan, C Zhong, J Liu, J Ding, Y Deng, X Han… - Chemical …, 2022 - ACS Publications
The ever-increasing demand for flexible and portable electronics has stimulated research
and development in building advanced electrochemical energy devices which are …

Engineering d‐p Orbital Hybridization in Single‐Atom Metal‐Embedded Three‐Dimensional Electrodes for Li–S Batteries

Z Han, S Zhao, J Xiao, X Zhong, J Sheng… - Advanced …, 2021 - Wiley Online Library
Single‐atom metal catalysts (SACs) are used as sulfur cathode additives to promote battery
performance, although the material selection and mechanism that govern the catalytic …

Sulfur reduction reaction in lithium–sulfur batteries: Mechanisms, catalysts, and characterization

L Zhou, DL Danilov, F Qiao, J Wang… - Advanced energy …, 2022 - Wiley Online Library
Lithium–sulfur batteries are one of the most promising alternatives for advanced battery
systems due to the merits of extraordinary theoretical specific energy density, abundant …

dp Hybridization-Induced “Trapping–Coupling–Conversion” Enables High-Efficiency Nb Single-Atom Catalysis for Li–S Batteries

Y Zhang, C Kang, W Zhao, Y Song, J Zhu… - Journal of the …, 2023 - ACS Publications
Single-atom catalysts have been paid more attention to improving sluggish reaction kinetics
and anchoring polysulfide for lithium–sulfur (Li–S) batteries. It has been demonstrated that d …

Strategies toward high-loading lithium–sulfur batteries

T Wang, J He, XB Cheng, J Zhu, B Lu, Y Wu - ACS Energy Letters, 2022 - ACS Publications
A high sulfur loading is an essential prerequisite for the practical application of lithium–sulfur
batteries. However, it will inevitably exacerbate the shuttling effect and slow down the …

Isolated Single-Atom Ni–N5 Catalytic Site in Hollow Porous Carbon Capsules for Efficient Lithium–Sulfur Batteries

S Zhang, X Ao, J Huang, B Wei, Y Zhai, D Zhai… - Nano …, 2021 - ACS Publications
Lithium–sulfur (Li–S) batteries suffer from multiple complex and often interwoven issues,
such as the low electronic conductivity of sulfur and Li2S/Li2S2, shuttle effect, and sluggish …

Emerging catalysts to promote kinetics of lithium–sulfur batteries

P Wang, B Xi, M Huang, W Chen… - Advanced Energy …, 2021 - Wiley Online Library
Lithium–sulfur batteries (LSBs) with a high theoretical capacity of 1675 mAh g− 1 hold
promise in the realm of high‐energy‐density Li–metal batteries. To cope with the shuttle …