[HTML][HTML] A review of ensemble learning and data augmentation models for class imbalanced problems: combination, implementation and evaluation

AA Khan, O Chaudhari, R Chandra - Expert Systems with Applications, 2024 - Elsevier
Class imbalance (CI) in classification problems arises when the number of observations
belonging to one class is lower than the other. Ensemble learning combines multiple models …

Multi-fault diagnosis of Industrial Rotating Machines using Data-driven approach: A review of two decades of research

S Gawde, S Patil, S Kumar, P Kamat, K Kotecha… - … Applications of Artificial …, 2023 - Elsevier
Industry 4.0 is an era of smart manufacturing. Manufacturing is impossible without the use of
machinery. The majority of these machines comprise rotating components and are called …

An explainable artificial intelligence approach for unsupervised fault detection and diagnosis in rotating machinery

LC Brito, GA Susto, JN Brito, MAV Duarte - Mechanical Systems and Signal …, 2022 - Elsevier
The monitoring of rotating machinery is an essential task in today's production processes.
Currently, several machine learning and deep learning-based modules have achieved …

Compound fault diagnosis for rotating machinery: State-of-the-art, challenges, and opportunities

R Huang, J Xia, B Zhang, Z Chen… - Journal of dynamics …, 2023 - ojs.istp-press.com
Compound fault, as a primary failure leading to unexpected downtime of rotating machinery,
dramatically increases the difficulty in fault diagnosis. To deal with the difficulty encountered …

A rotating machinery fault diagnosis method based on multi-scale dimensionless indicators and random forests

Q Hu, XS Si, QH Zhang, AS Qin - Mechanical systems and signal …, 2020 - Elsevier
Fault diagnosis methods based on dimensionless indicators have long been studied for
rotating machinery. However, traditional dimensionless indicators frequently suffer a low …

A scoping review on multi-fault diagnosis of industrial rotating machines using multi-sensor data fusion

S Gawde, S Patil, S Kumar, K Kotecha - Artificial Intelligence Review, 2023 - Springer
Rotating machines is an essential part of any manufacturing industry. The sudden
breakdown of such machines due to improper maintenance can also lead to the industries' …

Bayesian approach and time series dimensionality reduction to LSTM-based model-building for fault diagnosis of a reciprocating compressor

D Cabrera, A Guamán, S Zhang, M Cerrada… - Neurocomputing, 2020 - Elsevier
Reciprocating compression machinery is the primary source of compressed air in the
industry. Undiagnosed faults in the machinery's components produce a high rate of …

[HTML][HTML] Imbalanced fault diagnosis of rotating machinery via multi-domain feature extraction and cost-sensitive learning

Q Xu, S Lu, W Jia, C Jiang - Journal of Intelligent Manufacturing, 2020 - Springer
Fault diagnosis plays an essential role in rotating machinery manufacturing systems to
reduce their maintenance costs. How to improve diagnosis accuracy remains an open issue …

Research on fault diagnosis of supercharged boiler with limited data based on few-shot learning

G Li, Y Li, C Fang, J Su, H Wang, S Sun, G Zhang, J Shi - Energy, 2023 - Elsevier
The safety of the supercharged boiler affects the normal operation of the steam power
system, while its fault samples are few and contain large noise in reality. Therefore, we …

Machine learning for fault analysis in rotating machinery: A comprehensive review

O Das, DB Das, D Birant - Heliyon, 2023 - cell.com
As the concept of Industry 4.0 is introduced, artificial intelligence-based fault analysis is
attracted the corresponding community to develop effective intelligent fault diagnosis and …