Brain image segmentation in recent years: A narrative review

A Fawzi, A Achuthan, B Belaton - Brain sciences, 2021 - mdpi.com
Brain image segmentation is one of the most time-consuming and challenging procedures in
a clinical environment. Recently, a drastic increase in the number of brain disorders has …

Overview of multi-modal brain tumor mr image segmentation

W Zhang, Y Wu, B Yang, S Hu, L Wu, S Dhelim - Healthcare, 2021 - mdpi.com
The precise segmentation of brain tumor images is a vital step towards accurate diagnosis
and effective treatment of brain tumors. Magnetic Resonance Imaging (MRI) can generate …

A novel approach for brain tumour detection using deep learning based technique

KR Pedada, B Rao, KK Patro, JP Allam… - … Signal Processing and …, 2023 - Elsevier
Identifying the tumour's extent is a major challenge in planning treatment for brain tumours
and correctly measuring their size. Magnetic resonance imaging (MRI) has emerged as a …

dResU-Net: 3D deep residual U-Net based brain tumor segmentation from multimodal MRI

R Raza, UI Bajwa, Y Mehmood, MW Anwar… - … Signal Processing and …, 2023 - Elsevier
Glioma is the most prevalent and dangerous type of brain tumor which can be life-
threatening when its grade is high. The early detection of these tumors can improve and …

U-Net-based models towards optimal MR brain image segmentation

R Yousef, S Khan, G Gupta, T Siddiqui, BM Albahlal… - Diagnostics, 2023 - mdpi.com
Brain tumor segmentation from MRIs has always been a challenging task for radiologists,
therefore, an automatic and generalized system to address this task is needed. Among all …

A hybrid DenseNet121-UNet model for brain tumor segmentation from MR Images

N Cinar, A Ozcan, M Kaya - Biomedical Signal Processing and Control, 2022 - Elsevier
Several techniques are used to detect brain tumors in the medical research field; however,
Magnetic Resonance Imaging (MRI) is still the most effective technique used by experts …

Tmd-unet: Triple-unet with multi-scale input features and dense skip connection for medical image segmentation

ST Tran, CH Cheng, TT Nguyen, MH Le, DG Liu - Healthcare, 2021 - mdpi.com
Deep learning is one of the most effective approaches to medical image processing
applications. Network models are being studied more and more for medical image …

A Multiple Layer U-Net, Un-Net, for Liver and Liver Tumor Segmentation in CT

ST Tran, CH Cheng, DG Liu - IEEE Access, 2020 - ieeexplore.ieee.org
Medical image segmentation is one of the crucial tasks in diagnosis as well as pre-surgery.
Recently, deep learning has significantly contributed to improving the efficiency of medical …

[HTML][HTML] Attention-based multimodal glioma segmentation with multi-attention layers for small-intensity dissimilarity

X Liu, S Hou, S Liu, W Ding, Y Zhang - Journal of King Saud University …, 2023 - Elsevier
The segmentation of glioma by computer vision is one of the hot topics in medical image
analysis, which further helps doctors to make a better treatment plan for glioma. At present …

[HTML][HTML] An optimized XGBoost technique for accurate brain tumor detection using feature selection and image segmentation

CJ Tseng, C Tang - Healthcare Analytics, 2023 - Elsevier
An abnormal multiplication of cells in the brain forms malignant and benign brain tumors.
Malignant brain tumors are more prevalent than benign ones. Detecting a tumor's physical …