Electrospun fiber-based flexible electronics: Fiber fabrication, device platform, functionality integration and applications

Q Gao, S Agarwal, A Greiner, T Zhang - Progress in Materials Science, 2023 - Elsevier
Flexible electronics have attracted considerable attention in the past two decades due to
their distinctive features and numerous potential applications in electronic skins, human …

Wearable and implantable devices for cardiovascular healthcare: from monitoring to therapy based on flexible and stretchable electronics

YJ Hong, H Jeong, KW Cho, N Lu… - Advanced Functional …, 2019 - Wiley Online Library
Cardiovascular disease is the leading cause of death and has dramatically increased in
recent years. Continuous cardiac monitoring is particularly important for early diagnosis and …

Degradable biomedical elastomers: paving the future of tissue repair and regenerative medicine

B Jia, H Huang, Z Dong, X Ren, Y Lu… - Chemical Society …, 2024 - pubs.rsc.org
Degradable biomedical elastomers (DBE), characterized by controlled biodegradability,
excellent biocompatibility, tailored elasticity, and favorable network design and …

Organic Bioelectronics for In Vitro Systems

C Pitsalidis, AM Pappa, AJ Boys, Y Fu… - Chemical …, 2021 - ACS Publications
Bioelectronics have made strides in improving clinical diagnostics and precision medicine.
The potential of bioelectronics for bidirectional interfacing with biology through continuous …

Graphene-based 3D scaffolds in tissue engineering: fabrication, applications, and future scope in liver tissue engineering

R Geetha Bai, K Muthoosamy, S Manickam… - International journal …, 2019 - Taylor & Francis
Tissue engineering embraces the potential of recreating and replacing defective body parts
by advancements in the medical field. Being a biocompatible nanomaterial with outstanding …

Drug delivery to macrophages: a review of targeting drugs and drug carriers to macrophages for inflammatory diseases

W He, N Kapate, CW Shields IV, S Mitragotri - Advanced drug delivery …, 2020 - Elsevier
Macrophages play a key role in defending against foreign pathogens, healing wounds, and
regulating tissue homeostasis. Driving this versatility is their phenotypic plasticity, which …

Advances in cell-conductive polymer biointerfaces and role of the plasma membrane

A Mariano, C Lubrano, U Bruno, C Ausilio… - Chemical …, 2021 - ACS Publications
The plasma membrane (PM) is often described as a wall, a physical barrier separating the
cell cytoplasm from the extracellular matrix (ECM). Yet, this wall is a highly dynamic structure …

Wireless Battery-free and Fully Implantable Organ Interfaces

A Bhatia, J Hanna, T Stuart, KA Kasper… - Chemical …, 2024 - ACS Publications
Advances in soft materials, miniaturized electronics, sensors, stimulators, radios, and battery-
free power supplies are resulting in a new generation of fully implantable organ interfaces …

Conductive scaffolds for cardiac and neuronal tissue engineering: governing factors and mechanisms

A Burnstine‐Townley, Y Eshel… - Advanced Functional …, 2020 - Wiley Online Library
Tissue engineering is a promising therapeutic approach in medicine, targeting the
replacement of a diseased tissue with a healthy one grown within an artificial scaffold. Due …

Rational design of electrically conductive biomaterials toward excitable tissues regeneration

G Zhao, H Zhou, G Jin, B Jin, S Geng, Z Luo… - Progress in Polymer …, 2022 - Elsevier
Cells in vivo are situated in a complicated microenvironment composed of diverse
biochemical and biophysical cues. To regulate biological functions of cells, tissues and …