Motion planning for autonomous driving: The state of the art and future perspectives

S Teng, X Hu, P Deng, B Li, Y Li, Y Ai… - IEEE Transactions …, 2023 - ieeexplore.ieee.org
Intelligent vehicles (IVs) have gained worldwide attention due to their increased
convenience, safety advantages, and potential commercial value. Despite predictions of …

A review of safe reinforcement learning: Methods, theory and applications

S Gu, L Yang, Y Du, G Chen, F Walter, J Wang… - arXiv preprint arXiv …, 2022 - arxiv.org
Reinforcement Learning (RL) has achieved tremendous success in many complex decision-
making tasks. However, safety concerns are raised during deploying RL in real-world …

Safe learning in robotics: From learning-based control to safe reinforcement learning

L Brunke, M Greeff, AW Hall, Z Yuan… - Annual Review of …, 2022 - annualreviews.org
The last half decade has seen a steep rise in the number of contributions on safe learning
methods for real-world robotic deployments from both the control and reinforcement learning …

Safe control with learned certificates: A survey of neural lyapunov, barrier, and contraction methods for robotics and control

C Dawson, S Gao, C Fan - IEEE Transactions on Robotics, 2023 - ieeexplore.ieee.org
Learning-enabled control systems have demonstrated impressive empirical performance on
challenging control problems in robotics, but this performance comes at the cost of reduced …

Responsive safety in reinforcement learning by pid lagrangian methods

A Stooke, J Achiam, P Abbeel - International Conference on …, 2020 - proceedings.mlr.press
Lagrangian methods are widely used algorithms for constrained optimization problems, but
their learning dynamics exhibit oscillations and overshoot which, when applied to safe …

Recovery rl: Safe reinforcement learning with learned recovery zones

B Thananjeyan, A Balakrishna, S Nair… - IEEE Robotics and …, 2021 - ieeexplore.ieee.org
Safety remains a central obstacle preventing widespread use of RL in the real world:
learning new tasks in uncertain environments requires extensive exploration, but safety …

Maximum entropy RL (provably) solves some robust RL problems

B Eysenbach, S Levine - arXiv preprint arXiv:2103.06257, 2021 - arxiv.org
Many potential applications of reinforcement learning (RL) require guarantees that the agent
will perform well in the face of disturbances to the dynamics or reward function. In this paper …

[PDF][PDF] Policy learning with constraints in model-free reinforcement learning: A survey

Y Liu, A Halev, X Liu - The 30th international joint conference on artificial …, 2021 - par.nsf.gov
Reinforcement Learning (RL) algorithms have had tremendous success in simulated
domains. These algorithms, however, often cannot be directly applied to physical systems …

Constrained decision transformer for offline safe reinforcement learning

Z Liu, Z Guo, Y Yao, Z Cen, W Yu… - International …, 2023 - proceedings.mlr.press
Safe reinforcement learning (RL) trains a constraint satisfaction policy by interacting with the
environment. We aim to tackle a more challenging problem: learning a safe policy from an …

Learning-based model predictive control for safe exploration

T Koller, F Berkenkamp, M Turchetta… - 2018 IEEE conference …, 2018 - ieeexplore.ieee.org
Learning-based methods have been successful in solving complex control tasks without
significant prior knowledge about the system. However, these methods typically do not …