Shelukhin's Hofer distance and a symplectic cohomology barcode for contactomorphisms

D Cant - arXiv preprint arXiv:2309.00529, 2023 - arxiv.org
This paper constructs a persistence module of Floer cohomology groups associated to a
contactomorphism of the ideal boundary of a Liouville manifold. The barcode (or, bottleneck) …

Quantitative characterization in contact Hamiltonian dynamics--I

D Djordjević, I Uljarević, J Zhang - arXiv preprint arXiv:2309.00527, 2023 - arxiv.org
Based on the contact Hamiltonian Floer theory established by Will J. Merry and the second
author that applies to any admissible contact Hamiltonian system $(M,\xi=\ker\alpha, h) …

Rabinowitz Floer homology for prequantization bundles and Floer Gysin sequence

J Bae, J Kang, S Kim - Mathematische Annalen, 2024 - Springer
Let Y be a prequantization bundle over a closed spherically monotone symplectic manifold
Σ. Adapting an idea due to Diogo and Lisi, we study a split version of Rabinowitz Floer …

[PDF][PDF] Extensible positive loops and vanishing of symplectic cohomology

D Cant, J Hedicke, E Kilgore - arXiv preprint arXiv:2311.18267, 2023 - researchgate.net
The symplectic cohomology of certain symplectic manifolds W with non-compact ends
modelled on the positive symplectization of a compact contact manifold Y is shown to vanish …

Remarks on eternal classes in symplectic cohomology

D Cant - arXiv preprint arXiv:2410.03914, 2024 - arxiv.org
This paper studies special classes in the symplectic cohomology of a semipositive and
convex-at-infinity symplectic manifold $ W $. The classes under consideration lie in the …

Selective symplectic homology with applications to contact non-squeezing

I Uljarević - Compositio Mathematica, 2023 - cambridge.org
We prove a contact non-squeezing phenomenon on homotopy spheres that are fillable by
Liouville domains with large symplectic homology: there exists a smoothly embedded ball in …

Selective Floer cohomology for contact vector fields

D Cant, I Uljarević - arXiv preprint arXiv:2405.05443, 2024 - arxiv.org
This paper associates a persistence module to a contact vector field $ X $ on the ideal
boundary of a Liouville manifold. The persistence module measures the dynamics of $ X …