Learning circuits with few negations
Monotone Boolean functions, and the monotone Boolean circuits that compute them, have
been intensively studied in complexity theory. In this paper we study the structure of Boolean …
been intensively studied in complexity theory. In this paper we study the structure of Boolean …
Asymptotics of growth for non-monotone complexity of multi-valued logic function systems
VV Kochergin, AV Mikhailovich - Сибирские электронные …, 2017 - mathnet.ru
The problem of the complexity of multi-valued logic functions realization by circuits in a
special basis is investigated. This kind of basis consists of elements of two types. The first …
special basis is investigated. This kind of basis consists of elements of two types. The first …
О минимальном числе отрицаний при реализации систем функций многозначной логики
ВВ Кочергин, АВ Михайлович - Дискретная математика, 2016 - mathnet.ru
Рассматривается задача о сложности реализации функций k-значной логики схемами
в бесконечных полных базисах, содержащих все монотонные функции; вес …
в бесконечных полных базисах, содержащих все монотонные функции; вес …
Limiting negations in formulas
H Morizumi - International Colloquium on Automata, Languages …, 2009 - Springer
Negation-limited circuits have been studied as a circuit model between general circuits and
monotone circuits. In this paper, we consider limiting negations in formulas. The minimum …
monotone circuits. In this paper, we consider limiting negations in formulas. The minimum …
О сложности функций многозначной логики в одном бесконечном базисе
ВВ Кочергин, АВ Михайлович - Дискретный анализ и …, 2018 - ojs.math.nsc.ru
Аннотация Исследуется сложность реализации функций k-значной логики (k≥ 3)
схемами из функциональных элементов в бесконечном базисе, состоящем из …
схемами из функциональных элементов в бесконечном базисе, состоящем из …
Limiting negations in non-deterministic circuits
H Morizumi - Theoretical Computer Science, 2009 - Elsevier
The minimum number of NOT gates in a Boolean circuit computing a Boolean function f is
called the inversion complexity of f. In 1958, Markov determined the inversion complexity of …
called the inversion complexity of f. In 1958, Markov determined the inversion complexity of …
On the complexity of multivalued logic functions over some infinite basis
VV Kochergin, AV Mikhailovich - Journal of Applied and Industrial …, 2018 - Springer
Under study is the complexity of the realization of k-valued logic functions (k≥ 3) by logic
circuits in the infinite basis consisting of the Post negation (ie, the function (x+ 1) mod k) and …
circuits in the infinite basis consisting of the Post negation (ie, the function (x+ 1) mod k) and …
Some extensions of the inversion complexity of Boolean functions
VV Kochergin, AV Mikhailovich - arXiv preprint arXiv:1506.04485, 2015 - arxiv.org
The minimum number of NOT gates in a Boolean circuit computing a Boolean function is
called the inversion complexity of the function. In 1957, AA Markov determined the inversion …
called the inversion complexity of the function. In 1957, AA Markov determined the inversion …
The minimum number of negations in circuits for systems of multi-valued functions
VV Kochergin, AV Mikhailovich - Discrete Mathematics and …, 2017 - degruyter.com
The paper is concerned with the complexity of realization of k-valued logic functions by logic
circuits over an infinite complete bases containing all monotone functions; the weight of …
circuits over an infinite complete bases containing all monotone functions; the weight of …
Inversion complexity of functions of multi-valued logic
VV Kochergin, AV Mikhailovich - arXiv preprint arXiv:1510.05942, 2015 - arxiv.org
The minimum number of NOT gates in a logic circuit computing a Boolean function is called
the inversion complexity of the function. In 1957, AA Markov determined the inversion …
the inversion complexity of the function. In 1957, AA Markov determined the inversion …