Learning circuits with few negations

E Blais, CL Canonne, IC Oliveira, RA Servedio… - arXiv preprint arXiv …, 2014 - arxiv.org
Monotone Boolean functions, and the monotone Boolean circuits that compute them, have
been intensively studied in complexity theory. In this paper we study the structure of Boolean …

Asymptotics of growth for non-monotone complexity of multi-valued logic function systems

VV Kochergin, AV Mikhailovich - Сибирские электронные …, 2017 - mathnet.ru
The problem of the complexity of multi-valued logic functions realization by circuits in a
special basis is investigated. This kind of basis consists of elements of two types. The first …

О минимальном числе отрицаний при реализации систем функций многозначной логики

ВВ Кочергин, АВ Михайлович - Дискретная математика, 2016 - mathnet.ru
Рассматривается задача о сложности реализации функций k-значной логики схемами
в бесконечных полных базисах, содержащих все монотонные функции; вес …

Limiting negations in formulas

H Morizumi - International Colloquium on Automata, Languages …, 2009 - Springer
Negation-limited circuits have been studied as a circuit model between general circuits and
monotone circuits. In this paper, we consider limiting negations in formulas. The minimum …

О сложности функций многозначной логики в одном бесконечном базисе

ВВ Кочергин, АВ Михайлович - Дискретный анализ и …, 2018 - ojs.math.nsc.ru
Аннотация Исследуется сложность реализации функций k-значной логики (k≥ 3)
схемами из функциональных элементов в бесконечном базисе, состоящем из …

Limiting negations in non-deterministic circuits

H Morizumi - Theoretical Computer Science, 2009 - Elsevier
The minimum number of NOT gates in a Boolean circuit computing a Boolean function f is
called the inversion complexity of f. In 1958, Markov determined the inversion complexity of …

On the complexity of multivalued logic functions over some infinite basis

VV Kochergin, AV Mikhailovich - Journal of Applied and Industrial …, 2018 - Springer
Under study is the complexity of the realization of k-valued logic functions (k≥ 3) by logic
circuits in the infinite basis consisting of the Post negation (ie, the function (x+ 1) mod k) and …

Some extensions of the inversion complexity of Boolean functions

VV Kochergin, AV Mikhailovich - arXiv preprint arXiv:1506.04485, 2015 - arxiv.org
The minimum number of NOT gates in a Boolean circuit computing a Boolean function is
called the inversion complexity of the function. In 1957, AA Markov determined the inversion …

The minimum number of negations in circuits for systems of multi-valued functions

VV Kochergin, AV Mikhailovich - Discrete Mathematics and …, 2017 - degruyter.com
The paper is concerned with the complexity of realization of k-valued logic functions by logic
circuits over an infinite complete bases containing all monotone functions; the weight of …

Inversion complexity of functions of multi-valued logic

VV Kochergin, AV Mikhailovich - arXiv preprint arXiv:1510.05942, 2015 - arxiv.org
The minimum number of NOT gates in a logic circuit computing a Boolean function is called
the inversion complexity of the function. In 1957, AA Markov determined the inversion …