Systematic reviews in sentiment analysis: a tertiary study

A Ligthart, C Catal, B Tekinerdogan - Artificial intelligence review, 2021 - Springer
With advanced digitalisation, we can observe a massive increase of user-generated content
on the web that provides opinions of people on different subjects. Sentiment analysis is the …

Multi-view learning overview: Recent progress and new challenges

J Zhao, X Xie, X Xu, S Sun - Information Fusion, 2017 - Elsevier
Multi-view learning is an emerging direction in machine learning which considers learning
with multiple views to improve the generalization performance. Multi-view learning is also …

A survey on semi-supervised learning

JE Van Engelen, HH Hoos - Machine learning, 2020 - Springer
Semi-supervised learning is the branch of machine learning concerned with using labelled
as well as unlabelled data to perform certain learning tasks. Conceptually situated between …

Semi-supervised and unsupervised deep visual learning: A survey

Y Chen, M Mancini, X Zhu… - IEEE transactions on …, 2022 - ieeexplore.ieee.org
State-of-the-art deep learning models are often trained with a large amount of costly labeled
training data. However, requiring exhaustive manual annotations may degrade the model's …

Tabtransformer: Tabular data modeling using contextual embeddings

X Huang, A Khetan, M Cvitkovic, Z Karnin - arXiv preprint arXiv …, 2020 - arxiv.org
We propose TabTransformer, a novel deep tabular data modeling architecture for
supervised and semi-supervised learning. The TabTransformer is built upon self-attention …

[HTML][HTML] Self-training: A survey

MR Amini, V Feofanov, L Pauletto, L Hadjadj… - Neurocomputing, 2025 - Elsevier
Self-training methods have gained significant attention in recent years due to their
effectiveness in leveraging small labeled datasets and large unlabeled observations for …

Uncertainty-guided dual-views for semi-supervised volumetric medical image segmentation

H Peiris, M Hayat, Z Chen, G Egan… - Nature Machine …, 2023 - nature.com
Deep learning has led to tremendous progress in the field of medical artificial intelligence.
However, training deep-learning models usually require large amounts of annotated data …

Logic-induced diagnostic reasoning for semi-supervised semantic segmentation

C Liang, W Wang, J Miao… - Proceedings of the IEEE …, 2023 - openaccess.thecvf.com
Recent advances in semi-supervised semantic segmentation have been heavily reliant on
pseudo labeling to compensate for limited labeled data, disregarding the valuable relational …

Multi-co-training for document classification using various document representations: TF–IDF, LDA, and Doc2Vec

D Kim, D Seo, S Cho, P Kang - Information sciences, 2019 - Elsevier
The purpose of document classification is to assign the most appropriate label to a specified
document. The main challenges in document classification are insufficient label information …

Effective and efficient hybrid android malware classification using pseudo-label stacked auto-encoder

S Mahdavifar, D Alhadidi, AA Ghorbani - Journal of network and systems …, 2022 - Springer
Android has become the target of attackers because of its popularity. The detection of
Android mobile malware has become increasingly important due to its significant threat …