K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data

AM Ikotun, AE Ezugwu, L Abualigah, B Abuhaija… - Information …, 2023 - Elsevier
Advances in recent techniques for scientific data collection in the era of big data allow for the
systematic accumulation of large quantities of data at various data-capturing sites. Similarly …

[HTML][HTML] Financial fraud: a review of anomaly detection techniques and recent advances

W Hilal, SA Gadsden, J Yawney - Expert systems With applications, 2022 - Elsevier
With the rise of technology and the continued economic growth evident in modern society,
acts of fraud have become much more prevalent in the financial industry, costing institutions …

[HTML][HTML] Deep learning in food category recognition

Y Zhang, L Deng, H Zhu, W Wang, Z Ren, Q Zhou… - Information …, 2023 - Elsevier
Integrating artificial intelligence with food category recognition has been a field of interest for
research for the past few decades. It is potentially one of the next steps in revolutionizing …

AI-based evaluation system for supply chain vulnerabilities and resilience amidst external shocks: An empirical approach

U Mittal, D Panchal - Reports in Mechanical Engineering, 2023 - rme-journal.org
The study focuses on the intricacies and vulnerabilities inherent in supply chains, which are
often influenced by external disruptions such as pandemics, conflict scenarios, and inflation …

[HTML][HTML] Predictive maintenance enabled by machine learning: Use cases and challenges in the automotive industry

A Theissler, J Pérez-Velázquez, M Kettelgerdes… - Reliability engineering & …, 2021 - Elsevier
Recent developments in maintenance modelling fueled by data-based approaches such as
machine learning (ML), have enabled a broad range of applications. In the automotive …

Challenges in predictive maintenance–A review

P Nunes, J Santos, E Rocha - CIRP Journal of Manufacturing Science and …, 2023 - Elsevier
Predictive maintenance (PdM) aims the reduction of costs to increase the competitive
strength of the enterprises. It uses sensor data together with analytics techniques to optimize …

Self-supervised learning methods and applications in medical imaging analysis: A survey

S Shurrab, R Duwairi - PeerJ Computer Science, 2022 - peerj.com
The scarcity of high-quality annotated medical imaging datasets is a major problem that
collides with machine learning applications in the field of medical imaging analysis and …

Annual Research Review: The transdiagnostic revolution in neurodevelopmental disorders

DE Astle, J Holmes, R Kievit… - Journal of Child …, 2022 - Wiley Online Library
Practitioners frequently use diagnostic criteria to identify children with neurodevelopmental
disorders and to guide intervention decisions. These criteria also provide the organising …

A quantitative discriminant method of elbow point for the optimal number of clusters in clustering algorithm

C Shi, B Wei, S Wei, W Wang, H Liu, J Liu - EURASIP journal on wireless …, 2021 - Springer
Clustering, a traditional machine learning method, plays a significant role in data analysis.
Most clustering algorithms depend on a predetermined exact number of clusters, whereas …

A survey of machine and deep learning methods for internet of things (IoT) security

MA Al-Garadi, A Mohamed, AK Al-Ali… - … surveys & tutorials, 2020 - ieeexplore.ieee.org
The Internet of Things (IoT) integrates billions of smart devices that can communicate with
one another with minimal human intervention. IoT is one of the fastest developing fields in …