Transformers in medical imaging: A survey
Following unprecedented success on the natural language tasks, Transformers have been
successfully applied to several computer vision problems, achieving state-of-the-art results …
successfully applied to several computer vision problems, achieving state-of-the-art results …
Domain adaptation for medical image analysis: a survey
Machine learning techniques used in computer-aided medical image analysis usually suffer
from the domain shift problem caused by different distributions between source/reference …
from the domain shift problem caused by different distributions between source/reference …
Unsupervised medical image translation with adversarial diffusion models
Imputation of missing images via source-to-target modality translation can improve diversity
in medical imaging protocols. A pervasive approach for synthesizing target images involves …
in medical imaging protocols. A pervasive approach for synthesizing target images involves …
A review of deep-learning-based medical image segmentation methods
As an emerging biomedical image processing technology, medical image segmentation has
made great contributions to sustainable medical care. Now it has become an important …
made great contributions to sustainable medical care. Now it has become an important …
ResViT: residual vision transformers for multimodal medical image synthesis
Generative adversarial models with convolutional neural network (CNN) backbones have
recently been established as state-of-the-art in numerous medical image synthesis tasks …
recently been established as state-of-the-art in numerous medical image synthesis tasks …
A review of deep learning in medical imaging: Imaging traits, technology trends, case studies with progress highlights, and future promises
SK Zhou, H Greenspan, C Davatzikos… - Proceedings of the …, 2021 - ieeexplore.ieee.org
Since its renaissance, deep learning has been widely used in various medical imaging tasks
and has achieved remarkable success in many medical imaging applications, thereby …
and has achieved remarkable success in many medical imaging applications, thereby …
Deep learning approaches for data augmentation in medical imaging: a review
A Kebaili, J Lapuyade-Lahorgue, S Ruan - Journal of Imaging, 2023 - mdpi.com
Deep learning has become a popular tool for medical image analysis, but the limited
availability of training data remains a major challenge, particularly in the medical field where …
availability of training data remains a major challenge, particularly in the medical field where …
A review on generative adversarial networks: Algorithms, theory, and applications
Generative adversarial networks (GANs) have recently become a hot research topic;
however, they have been studied since 2014, and a large number of algorithms have been …
however, they have been studied since 2014, and a large number of algorithms have been …
Artificial intelligence and machine learning for medical imaging: A technology review
Artificial intelligence (AI) has recently become a very popular buzzword, as a consequence
of disruptive technical advances and impressive experimental results, notably in the field of …
of disruptive technical advances and impressive experimental results, notably in the field of …
[HTML][HTML] An overview of deep learning in medical imaging focusing on MRI
AS Lundervold, A Lundervold - Zeitschrift für Medizinische Physik, 2019 - Elsevier
What has happened in machine learning lately, and what does it mean for the future of
medical image analysis? Machine learning has witnessed a tremendous amount of attention …
medical image analysis? Machine learning has witnessed a tremendous amount of attention …