Quantum collision models: Open system dynamics from repeated interactions
We present an extensive introduction to quantum collision models (CMs), also known as
repeated interactions schemes: a class of microscopic system–bath models for investigating …
repeated interactions schemes: a class of microscopic system–bath models for investigating …
[HTML][HTML] Bosonic quantum error correction codes in superconducting quantum circuits
Quantum information is vulnerable to environmental noise and experimental imperfections,
hindering the reliability of practical quantum information processors. Therefore, quantum …
hindering the reliability of practical quantum information processors. Therefore, quantum …
Real-time quantum error correction beyond break-even
The ambition of harnessing the quantum for computation is at odds with the fundamental
phenomenon of decoherence. The purpose of quantum error correction (QEC) is to …
phenomenon of decoherence. The purpose of quantum error correction (QEC) is to …
Fast universal control of an oscillator with weak dispersive coupling to a qubit
Full manipulation of a quantum system requires controlled evolution generated by nonlinear
interactions, which is coherent when the rate of nonlinearity is large compared with the rate …
interactions, which is coherent when the rate of nonlinearity is large compared with the rate …
Noisy intermediate-scale quantum computers
Quantum computers have made extraordinary progress over the past decade, and
significant milestones have been achieved along the path of pursuing universal fault-tolerant …
significant milestones have been achieved along the path of pursuing universal fault-tolerant …
Quantum information processing with bosonic qubits in circuit QED
The unique features of quantum theory offer a powerful new paradigm for information
processing. Translating these mathematical abstractions into useful algorithms and …
processing. Translating these mathematical abstractions into useful algorithms and …
Error correction of a logical grid state qubit by dissipative pumping
Stabilization of encoded logical qubits using quantum error correction is crucial for the
realization of reliable quantum computers. Although error-correcting codes implemented …
realization of reliable quantum computers. Although error-correcting codes implemented …
Quantum error correction with the Gottesman-Kitaev-Preskill code
AL Grimsmo, S Puri - PRX Quantum, 2021 - APS
The Gottesman-Kitaev-Preskill (GKP) code was proposed in 2001 by Daniel Gottesman,
Alexei Kitaev, and John Preskill as a way to encode a qubit in an oscillator. The GKP …
Alexei Kitaev, and John Preskill as a way to encode a qubit in an oscillator. The GKP …
Model-free quantum control with reinforcement learning
Model bias is an inherent limitation of the current dominant approach to optimal quantum
control, which relies on a system simulation for optimization of control policies. To overcome …
control, which relies on a system simulation for optimization of control policies. To overcome …
Quantum control of bosonic modes with superconducting circuits
Bosonic modes have wide applications in various quantum technologies, such as optical
photons for quantum communication, magnons in spin ensembles for quantum information …
photons for quantum communication, magnons in spin ensembles for quantum information …