Delayed blow-up by transport noise
F Flandoli, L Galeati, D Luo - Communications in Partial Differential …, 2021 - Taylor & Francis
For some deterministic nonlinear PDEs on the torus whose solutions may blow up in finite
time, we show that, under suitable conditions on the nonlinear term, the blow-up is delayed …
time, we show that, under suitable conditions on the nonlinear term, the blow-up is delayed …
Dissipation enhancement of planar helical flows and applications to three-dimensional Kuramoto-Sivashinsky and Keller-Segel equations
Y Feng, B Shi, W Wang - Journal of Differential Equations, 2022 - Elsevier
We introduce the planar helical flows on three dimensional torus and study the dissipation
enhancement of such flows. We then use such flows as transport flows to solve the three …
enhancement of such flows. We then use such flows as transport flows to solve the three …
Algebraic calming for the 2D Kuramoto-Sivashinsky equations
We propose an approximate model for the 2D Kuramoto–Sivashinsky equations (KSE) of
flame fronts and crystal growth. We prove that this new'calmed'version of the KSE is globally …
flame fronts and crystal growth. We prove that this new'calmed'version of the KSE is globally …
Global existence for the two-dimensional Kuramoto–Sivashinsky equation with a shear flow
Abstract We consider the Kuramoto–Sivashinsky equation (KSE) on the two-dimensional
torus in the presence of advection by a given background shear flow. Under the assumption …
torus in the presence of advection by a given background shear flow. Under the assumption …
Polynomial mixing for white-forced Kuramoto-Sivashinsky equation on the whole line
P Gao - arXiv preprint arXiv:2408.00592, 2024 - arxiv.org
Our goal in this paper is to investigate ergodicity of white-forced Kuramoto-Sivashinsky
equation (KSE) on the whole line. Under the assumption that sufficiently many directions of …
equation (KSE) on the whole line. Under the assumption that sufficiently many directions of …
Enhanced dissipation by circularly symmetric and parallel pipe flows
We study enhanced dissipation due to the combined effect of diffusion or hyperdiffusion and
advection by an incompressible flow with circular or cylindrical symmetry in 2 and 3 space …
advection by an incompressible flow with circular or cylindrical symmetry in 2 and 3 space …
Suppression of epitaxial thin film growth by mixing
We consider following fourth-order parabolic equation with gradient nonlinearity on the two-
dimensional torus with and without advection of an incompressible vector field in the case …
dimensional torus with and without advection of an incompressible vector field in the case …
Analysis of large time asymptotics of the fourth‐order parabolic system involving variable coefficients and mixed nonlinearities
VV Au - Mathematical Methods in the Applied Sciences, 2023 - Wiley Online Library
In a general domain, we discuss an initial value problem for the symmetry generalized MM‐
coupled system of fourth‐order parabolic equations with space–time‐dependent diffusion …
coupled system of fourth‐order parabolic equations with space–time‐dependent diffusion …
Numerical solutions and analytical methods for the Kuralay equation: a path to understanding integrable systems
SH Alfalqi, MMA Khater - Optical and Quantum Electronics, 2024 - Springer
This study undertakes the challenging task of unraveling the intricacies embedded in the
integrable Kuralay equation, a cornerstone in the field of mathematical physics. Specifically …
integrable Kuralay equation, a cornerstone in the field of mathematical physics. Specifically …
[HTML][HTML] General solutions' laws of linear partial differential equations II
HL Zhu - Partial Differential Equations in Applied Mathematics, 2023 - Elsevier
This paper uses Z transformations to obtain the general solutions of a large number of
second-order, third-order and fourth-order linear partial differential equations for the first …
second-order, third-order and fourth-order linear partial differential equations for the first …