2D heterostructures for ubiquitous electronics and optoelectronics: principles, opportunities, and challenges

PV Pham, SC Bodepudi, K Shehzad, Y Liu, Y Xu… - Chemical …, 2022 - ACS Publications
A grand family of two-dimensional (2D) materials and their heterostructures have been
discovered through the extensive experimental and theoretical efforts of chemists, material …

Recent advances of single-atom catalysts in CO 2 conversion

S Wang, L Wang, D Wang, Y Li - Energy & Environmental Science, 2023 - pubs.rsc.org
The catalytic transformation of CO2 into valuable fuels/chemicals is a promising and
economically profitable process because it offers an alternative toward fossil feedstocks and …

Sb2Se3 Thin‐Film Solar Cells Exceeding 10% Power Conversion Efficiency Enabled by Injection Vapor Deposition Technology

Z Duan, X Liang, Y Feng, H Ma, B Liang… - Advanced …, 2022 - Wiley Online Library
Abstract Binary Sb2Se3 semiconductors are promising as the absorber materials in
inorganic chalcogenide compound photovoltaics due to their attractive anisotropic …

Fundamentals and applications of photo-thermal catalysis

D Mateo, JL Cerrillo, S Durini, J Gascon - Chemical Society Reviews, 2021 - pubs.rsc.org
Photo-thermal catalysis has recently emerged as an alternative route to drive chemical
reactions using light as an energy source. Through the synergistic combination of photo-and …

Heterojunction annealing enabling record open‐circuit voltage in antimony triselenide solar cells

R Tang, S Chen, ZH Zheng, ZH Su, JT Luo… - Advanced …, 2022 - Wiley Online Library
Despite the fact that antimony triselenide (Sb2Se3) thin‐film solar cells have undergone
rapid development in recent years, the large open‐circuit voltage (VOC) deficit still remains …

Suppressing buried interface nonradiative recombination losses toward high‐efficiency antimony triselenide solar cells

G Chen, Y Luo, M Abbas, M Ishaq, Z Zheng… - Advanced …, 2024 - Wiley Online Library
Abstract Antimony triselenide (Sb2Se3) has possessed excellent optoelectronic properties
and has gained interest as a light‐harvesting material for photovoltaic technology over the …

[HTML][HTML] Hydrothermal deposition of antimony selenosulfide thin films enables solar cells with 10% efficiency

R Tang, X Wang, W Lian, J Huang, Q Wei, M Huang… - Nature Energy, 2020 - nature.com
Abstract Antimony selenosulfide, Sb2 (S, Se) 3, has attracted attention over the last few
years as a light-harvesting material for photovoltaic technology owing to its phase stability …

Carrier transport enhancement mechanism in highly efficient antimony selenide thin‐film solar cell

Y Luo, G Chen, S Chen, N Ahmad… - Advanced Functional …, 2023 - Wiley Online Library
Exhibiting outstanding optoelectronic properties, antimony selenide (Sb2Se3) has attracted
considerable interest and has been developed as a light absorber layer for thin‐film solar …

Emerging chalcogenide thin films for solar energy harvesting devices

S Hadke, M Huang, C Chen, YF Tay, S Chen… - Chemical …, 2021 - ACS Publications
Chalcogenide semiconductors offer excellent optoelectronic properties for their use in solar
cells, exemplified by the commercialization of Cu (In, Ga) Se2-and CdTe-based photovoltaic …

Regulating Energy Band Alignment via Alkaline Metal Fluoride Assisted Solution Post‐Treatment Enabling Sb2(S,Se)3 Solar Cells with 10.7% Efficiency

Y Zhao, S Wang, C Jiang, C Li, P Xiao… - Advanced Energy …, 2022 - Wiley Online Library
Continuously boosting the power conversion efficiency (PCE) and delving deeper into its
functionalities are essential problems faced by the very new antimony selenosulfide (Sb2 (S …