A comprehensive survey on poisoning attacks and countermeasures in machine learning

Z Tian, L Cui, J Liang, S Yu - ACM Computing Surveys, 2022 - dl.acm.org
The prosperity of machine learning has been accompanied by increasing attacks on the
training process. Among them, poisoning attacks have become an emerging threat during …

Wild patterns reloaded: A survey of machine learning security against training data poisoning

AE Cinà, K Grosse, A Demontis, S Vascon… - ACM Computing …, 2023 - dl.acm.org
The success of machine learning is fueled by the increasing availability of computing power
and large training datasets. The training data is used to learn new models or update existing …

Glaze: Protecting artists from style mimicry by {Text-to-Image} models

S Shan, J Cryan, E Wenger, H Zheng… - 32nd USENIX Security …, 2023 - usenix.org
Recent text-to-image diffusion models such as MidJourney and Stable Diffusion threaten to
displace many in the professional artist community. In particular, models can learn to mimic …

The impact of adversarial attacks on federated learning: A survey

KN Kumar, CK Mohan… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
Federated learning (FL) has emerged as a powerful machine learning technique that
enables the development of models from decentralized data sources. However, the …

Fltrust: Byzantine-robust federated learning via trust bootstrapping

X Cao, M Fang, J Liu, NZ Gong - arXiv preprint arXiv:2012.13995, 2020 - arxiv.org
Byzantine-robust federated learning aims to enable a service provider to learn an accurate
global model when a bounded number of clients are malicious. The key idea of existing …

Data poisoning attacks against federated learning systems

V Tolpegin, S Truex, ME Gursoy, L Liu - … 14–18, 2020, proceedings, part i …, 2020 - Springer
Federated learning (FL) is an emerging paradigm for distributed training of large-scale deep
neural networks in which participants' data remains on their own devices with only model …

Local model poisoning attacks to {Byzantine-Robust} federated learning

M Fang, X Cao, J Jia, N Gong - 29th USENIX security symposium …, 2020 - usenix.org
In federated learning, multiple client devices jointly learn a machine learning model: each
client device maintains a local model for its local training dataset, while a master device …

Hidden trigger backdoor attacks

A Saha, A Subramanya, H Pirsiavash - Proceedings of the AAAI …, 2020 - ojs.aaai.org
With the success of deep learning algorithms in various domains, studying adversarial
attacks to secure deep models in real world applications has become an important research …

Threats, attacks and defenses to federated learning: issues, taxonomy and perspectives

P Liu, X Xu, W Wang - Cybersecurity, 2022 - Springer
Abstract Empirical attacks on Federated Learning (FL) systems indicate that FL is fraught
with numerous attack surfaces throughout the FL execution. These attacks can not only …

EV AA - Exchange Vanishing Adversarial Attack on LiDAR Point Clouds in Autonomous Vehicles

C Vishnu, J Khandelwal, CK Mohan… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
In addition to red-green-blue (RGB) camera sensors, light detection and ranging (LiDAR)
plays an important role in autonomous vehicles (AVs) to perceive their surroundings. Deep …