The best ways to slice a Polytope

MC Brandenburg, J De Loera, C Meroni - Mathematics of Computation, 2025 - ams.org
We study the structure of the set of all possible affine hyperplane sections of a convex
polytope. We present two different cell decompositions of this set, induced by hyperplane …

Inequalities for sections and projections of convex bodies

A Giannopoulos, A Koldobsky… - Harmonic analysis and …, 2023 - degruyter.com
This chapter belongs to the area of geometric tomography, which is the study of geometric
properties of solids based on data about their sections and projections. We describe a new …

Polynomial bounds in Koldobsky's discrete slicing problem

A Freyer, M Henk - Proceedings of the American Mathematical Society, 2024 - ams.org
In 2013, Koldobsky posed the problem to find a constant $ d_n $, depending only on the
dimension $ n $, such that for any origin-symmetric convex body $ K\subset\mathbb {R}^ n …

On Rogers–Shephard-type inequalities for the lattice point enumerator

D Alonso-Gutiérrez, E Lucas… - Communications in …, 2023 - World Scientific
In this paper, we study various Rogers–Shephard-type inequalities for the lattice point
enumerator G n (⋅) on ℝ n. In particular, for any non-empty convex bounded sets K, L⊂ ℝ n …

A Remark on discrete Brunn–Minkowski type inequalities via transportation of measure

BA Slomka - Israel Journal of Mathematics, 2024 - Springer
We give an alternative proof for discrete Brunn–Minkowski type inequalities, recently
obtained by Halikias, Klartag and the author. This proof also implies somewhat stronger …

On Discrete LOG-Brunn--Minkowski Type Inequalities

MA Hernández Cifre, E Lucas - SIAM Journal on Discrete Mathematics, 2022 - SIAM
The conjectured log-Brunn--Minkowski inequality says that the volume of centrally symmetric
convex bodies K,L⊂R^n satisfies vol\bigl((1-λ)⋅K+_0λ⋅L\bigr)≧vol(K)^1-λvol(L)^λ …

[引用][C] Aspects of volume of convex bodies: discretization, subspace concentration and polarity

A Freyer - 2023 - Dissertation, Berlin, Technische …

[引用][C] Inequalities for the lattice point enumerator

E Lucas Marín - Proyecto de investigación, 2022 - Universidad de Murcia