Stock movement prediction via gated recurrent unit network based on reinforcement learning with incorporated attention mechanisms

H Xu, L Chai, Z Luo, S Li - Neurocomputing, 2022 - Elsevier
The recent advances usually mine market information from the chaotic data to conduct a
stock movement prediction task. However, the current stock price movement prediction …

Unidirectional and bidirectional LSTM models for edge weight predictions in dynamic cross-market equity networks

B Bhattacharjee, R Kumar, A Senthilkumar - International Review of …, 2022 - Elsevier
Predicting financial networks has important implications in finance. However, less research
attention has been given in this direction. This study aims to predict cross market linkage …

Optimization of stock portfolio selection in Iran capital market using meta-heuristic algorithms

S Mostafaei Darmian, M Doaei - Quarterly journal of applied theories …, 2022 - ideas.repec.org
The purpose of this study is to optimize the portfolio in companies listed on the Iran capital
market (Tehran Stock Exchange and Iran Farabours) as a multi-objective optimization …

A hybrid approach based on multi-criteria decision making and data-driven optimization in solving portfolio selection problem

M Doaei, K Dehnad, M Dehnad - OPSEARCH, 2024 - Springer
In this paper, a two-phase approach based on multi-criteria decision making and multi-
objective optimization models is proposed to select portfolio optimally. In the first phase …

Forecasting financial market structure from network features using machine learning

D Castilho, TTP Souza, SM Kang, J Gama… - … and Information Systems, 2024 - Springer
We propose a model that forecasts market correlation structure from link-and node-based
financial network features using machine learning. For such, market structure is modeled as …

Un método para optimización de portafolios de acciones colombianas con predicción de retorno basado en una técnica de machine learning

A Baena Restrepo - 2023 - repositorio.unal.edu.co
Este trabajo propone una metodología para optimizar portafolios de acciones colombianas
al incorporar predicciones de retorno utilizando el enfoque de Markowitz. La investigación …

Towards Time-Variant-Aware Link Prediction in Dynamic Graph Through Self-supervised Learning

G Wen, P Cao, Z Jin, R Song, X Liu, J Yang… - … on Advanced Data …, 2023 - Springer
Dynamic graph link prediction is a challenging problem because the graph topology and
node attributes vary at different times. A purely supervised learning scheme for the dynamic …

A hybrid decision-making model for optimal portfolio selection under interval uncertainty

M Zahmati Iraj, M Doaei - Iranian Journal of Accounting, Auditing and …, 2024 - ijaaf.um.ac.ir
This paper proposes a hybrid approach that integrates fuzzy multi-criteria decision-making
with multi-objective mathematical optimization to address the investment management …

A hybrid approach based on multi-criteria decision making and data-based optimization in solving portfolio selection problem

M Doaei, K Dehnad, M Dehnad - 2023 - researchsquare.com
In this paper, a two-phase approach based on multi-criteria decision making and multi-
objective optimization is developed to solve the problem of optimal portfolio selection. In the …

ارائه رویکردی مبتنی بر بهینه‌سازی تصادفی به منظور حل مساله انتخاب سبد سهام در بازار سرمایه ایران با استفاده از الگوریتم‌های فراابتکاری

مصطفائی درمیان, سبحان, دعائی - فصلنامه علمی نظریه های کاربردی …, 2022‎ - ecoj.tabrizu.ac.ir
در این پژوهش مساله بهینهسازی سبد سهام در شرکتهای پذیرفته شده در بازار سرمایه ایران به عنوان
یک مساله بهینهسازی تصادفی چندهدفه مورد بررسی قرار گرفته است. تابع هدف اول شامل …