A comprehensive survey of continual learning: theory, method and application

L Wang, X Zhang, H Su, J Zhu - IEEE Transactions on Pattern …, 2024 - ieeexplore.ieee.org
To cope with real-world dynamics, an intelligent system needs to incrementally acquire,
update, accumulate, and exploit knowledge throughout its lifetime. This ability, known as …

Recent advances of continual learning in computer vision: An overview

H Qu, H Rahmani, L Xu, B Williams, J Liu - arXiv preprint arXiv …, 2021 - arxiv.org
In contrast to batch learning where all training data is available at once, continual learning
represents a family of methods that accumulate knowledge and learn continuously with data …

Revisiting class-incremental learning with pre-trained models: Generalizability and adaptivity are all you need

DW Zhou, ZW Cai, HJ Ye, DC Zhan, Z Liu - arXiv preprint arXiv …, 2023 - arxiv.org
Class-incremental learning (CIL) aims to adapt to emerging new classes without forgetting
old ones. Traditional CIL models are trained from scratch to continually acquire knowledge …

Class-incremental learning by knowledge distillation with adaptive feature consolidation

M Kang, J Park, B Han - … of the IEEE/CVF conference on …, 2022 - openaccess.thecvf.com
We present a novel class incremental learning approach based on deep neural networks,
which continually learns new tasks with limited memory for storing examples in the previous …

Federated class-incremental learning

J Dong, L Wang, Z Fang, G Sun, S Xu… - Proceedings of the …, 2022 - openaccess.thecvf.com
Federated learning (FL) has attracted growing attentions via data-private collaborative
training on decentralized clients. However, most existing methods unrealistically assume …

Continual detection transformer for incremental object detection

Y Liu, B Schiele, A Vedaldi… - Proceedings of the …, 2023 - openaccess.thecvf.com
Incremental object detection (IOD) aims to train an object detector in phases, each with
annotations for new object categories. As other incremental settings, IOD is subject to …

Self-sustaining representation expansion for non-exemplar class-incremental learning

K Zhu, W Zhai, Y Cao, J Luo… - Proceedings of the IEEE …, 2022 - openaccess.thecvf.com
Non-exemplar class-incremental learning is to recognize both the old and new classes
when old class samples cannot be saved. It is a challenging task since representation …

Revisiting class-incremental learning with pre-trained models: Generalizability and adaptivity are all you need

DW Zhou, ZW Cai, HJ Ye, DC Zhan, Z Liu - International Journal of …, 2024 - Springer
Class-incremental learning (CIL) aims to adapt to emerging new classes without forgetting
old ones. Traditional CIL models are trained from scratch to continually acquire knowledge …

Class-incremental learning: A survey

DW Zhou, QW Wang, ZH Qi, HJ Ye… - IEEE Transactions on …, 2024 - ieeexplore.ieee.org
Deep models, eg, CNNs and Vision Transformers, have achieved impressive achievements
in many vision tasks in the closed world. However, novel classes emerge from time to time in …

Semantic-aware knowledge distillation for few-shot class-incremental learning

A Cheraghian, S Rahman, P Fang… - Proceedings of the …, 2021 - openaccess.thecvf.com
Few-shot class incremental learning (FSCIL) portrays the problem of learning new concepts
gradually, where only a few examples per concept are available to the learner. Due to the …