Variational inference for sdes driven by fractional noise
We present a novel variational framework for performing inference in (neural) stochastic
differential equations (SDEs) driven by Markov-approximate fractional Brownian motion …
differential equations (SDEs) driven by Markov-approximate fractional Brownian motion …
Parametric estimation in fractional stochastic differential equation
Abstract Fractional Stochastic Differential Equations are becoming more popular in the
literature as they can model phenomena in financial data that typical Stochastic Differential …
literature as they can model phenomena in financial data that typical Stochastic Differential …
Adversarial Deep Hedging: Learning to Hedge without Price Process Modeling
Deep hedging is a deep-learning-based framework for derivative hedging in incomplete
markets. The advantage of deep hedging lies in its ability to handle various realistic market …
markets. The advantage of deep hedging lies in its ability to handle various realistic market …
Neural stochastic differential equations network as uncertainty quantification method for EEG source localization
RS Wabina, C Silpasuwanchai - Biomedical Physics & …, 2023 - iopscience.iop.org
EEG source localization remains a challenging problem given the uncertain conductivity
values of the volume conductor models (VCMs). As uncertain conductivities vary across …
values of the volume conductor models (VCMs). As uncertain conductivities vary across …
Lf-Net: Generating Fractional Time-Series with Latent Fractional-Net
K Nakagawa, K Hayashi - 2024 International Joint Conference …, 2024 - ieeexplore.ieee.org
In this paper, we introduce a novel method for generating fractional time series through the
utilization of neural networks. Although Neural Stochastic Differential Equations (Neural …
utilization of neural networks. Although Neural Stochastic Differential Equations (Neural …
CFTM: Continuous time fractional topic model
K Nakagawa, K Hayashi, Y Fujimoto - arXiv preprint arXiv:2402.01734, 2024 - arxiv.org
In this paper, we propose the Continuous Time Fractional Topic Model (cFTM), a new
method for dynamic topic modeling. This approach incorporates fractional Brownian …
method for dynamic topic modeling. This approach incorporates fractional Brownian …
Multivariate Time Series Modelling with Neural SDE Driven by Jump Diffusion
K Zakharov - International Conference on Computational Science, 2024 - Springer
Neural stochastic differential equations (neural SDEs) are effective for modelling complex
dynamics in time series data, especially random behavior. We introduced JDFlow, a novel …
dynamics in time series data, especially random behavior. We introduced JDFlow, a novel …
Estimating stratospheric polar vortex strength using ambient ocean‐generated infrasound and stochastics‐based machine learning
E Vorobeva, MD Eggen, AD Midtfjord… - Quarterly Journal of …, 2024 - Wiley Online Library
There are sparse opportunities for direct measurement of upper stratospheric winds, yet
improving their representation in subseasonal‐to‐seasonal prediction models can have …
improving their representation in subseasonal‐to‐seasonal prediction models can have …
Neural Rough Fractional SDE-Net による低正則パスを持つ金融時系列生成
林晃平, 中川慧 - 人工知能学会第二種研究会資料, 2022 - jstage.jst.go.jp
抄録 株価や経済指標などの金融時系列は, 一般に長期記憶性や不確実性など,
単純なモデルでは再現の難しい特徴を持つことが観測されており, このことは金融市場の複雑性を …
単純なモデルでは再現の難しい特徴を持つことが観測されており, このことは金融市場の複雑性を …
人工市場シミュレーションによる金融機械学習のデータ拡張: ボラティリティ予測への応用
橋本龍二, 和泉潔, 村山友理 - 人工知能学会全国大会論文集第38 回 …, 2024 - jstage.jst.go.jp
抄録 人工市場シミュレーションによる人工データが金融機械学習モデルの学習に有効であるか検証
する. 金融市場の過去データは数に限りがあることから, 金融時系列データは機械学習モデルの学習 …
する. 金融市場の過去データは数に限りがあることから, 金融時系列データは機械学習モデルの学習 …