Variational inference for sdes driven by fractional noise

R Daems, M Opper, G Crevecoeur, T Birdal - arXiv preprint arXiv …, 2023 - arxiv.org
We present a novel variational framework for performing inference in (neural) stochastic
differential equations (SDEs) driven by Markov-approximate fractional Brownian motion …

Parametric estimation in fractional stochastic differential equation

P Pramanik, EL Boone, RA Ghanam - Stats, 2024 - search.proquest.com
Abstract Fractional Stochastic Differential Equations are becoming more popular in the
literature as they can model phenomena in financial data that typical Stochastic Differential …

Adversarial Deep Hedging: Learning to Hedge without Price Process Modeling

M Hirano, K Minami, K Imajo - … ACM International Conference on AI in …, 2023 - dl.acm.org
Deep hedging is a deep-learning-based framework for derivative hedging in incomplete
markets. The advantage of deep hedging lies in its ability to handle various realistic market …

Neural stochastic differential equations network as uncertainty quantification method for EEG source localization

RS Wabina, C Silpasuwanchai - Biomedical Physics & …, 2023 - iopscience.iop.org
EEG source localization remains a challenging problem given the uncertain conductivity
values of the volume conductor models (VCMs). As uncertain conductivities vary across …

Lf-Net: Generating Fractional Time-Series with Latent Fractional-Net

K Nakagawa, K Hayashi - 2024 International Joint Conference …, 2024 - ieeexplore.ieee.org
In this paper, we introduce a novel method for generating fractional time series through the
utilization of neural networks. Although Neural Stochastic Differential Equations (Neural …

CFTM: Continuous time fractional topic model

K Nakagawa, K Hayashi, Y Fujimoto - arXiv preprint arXiv:2402.01734, 2024 - arxiv.org
In this paper, we propose the Continuous Time Fractional Topic Model (cFTM), a new
method for dynamic topic modeling. This approach incorporates fractional Brownian …

Multivariate Time Series Modelling with Neural SDE Driven by Jump Diffusion

K Zakharov - International Conference on Computational Science, 2024 - Springer
Neural stochastic differential equations (neural SDEs) are effective for modelling complex
dynamics in time series data, especially random behavior. We introduced JDFlow, a novel …

Estimating stratospheric polar vortex strength using ambient ocean‐generated infrasound and stochastics‐based machine learning

E Vorobeva, MD Eggen, AD Midtfjord… - Quarterly Journal of …, 2024 - Wiley Online Library
There are sparse opportunities for direct measurement of upper stratospheric winds, yet
improving their representation in subseasonal‐to‐seasonal prediction models can have …

Neural Rough Fractional SDE-Net による低正則パスを持つ金融時系列生成

林晃平, 中川慧 - 人工知能学会第二種研究会資料, 2022 - jstage.jst.go.jp
抄録 株価や経済指標などの金融時系列は, 一般に長期記憶性や不確実性など,
単純なモデルでは再現の難しい特徴を持つことが観測されており, このことは金融市場の複雑性を …

人工市場シミュレーションによる金融機械学習のデータ拡張: ボラティリティ予測への応用

橋本龍二, 和泉潔, 村山友理 - 人工知能学会全国大会論文集第38 回 …, 2024 - jstage.jst.go.jp
抄録 人工市場シミュレーションによる人工データが金融機械学習モデルの学習に有効であるか検証
する. 金融市場の過去データは数に限りがあることから, 金融時系列データは機械学習モデルの学習 …