Weighted random k satisfiability for k= 1, 2 (r2SAT) in discrete Hopfield neural network
Current studies on non-systematic satisfiability in Discrete Hopfield Neural Network are able
to avoid production of repetitive final neuron states which improves the quality of global …
to avoid production of repetitive final neuron states which improves the quality of global …
Supervised learning perspective in logic mining
Creating optimal logic mining is strongly dependent on how the learning data are structured.
Without optimal data structure, intelligence systems integrated into logic mining, such as an …
Without optimal data structure, intelligence systems integrated into logic mining, such as an …
A modified reverse-based analysis logic mining model with Weighted Random 2 Satisfiability logic in Discrete Hopfield Neural Network and multi-objective training of …
Over the years, the study on logic mining approach has increased exponentially. However,
most logic mining models disregarded any efforts in expanding the search space which led …
most logic mining models disregarded any efforts in expanding the search space which led …
YRAN2SAT: A novel flexible random satisfiability logical rule in discrete hopfield neural network
The current development of the satisfiability logical representation in Discrete Hopfield
Neural Network has two prominent perspectives which are systematic and non-systematic …
Neural Network has two prominent perspectives which are systematic and non-systematic …
PRO2SAT: Systematic probabilistic satisfiability logic in discrete hopfield neural network
Satisfiability is prominent in the field of computer science and mathematics because SAT
provides an alternative to represent the knowledge of any datasets. Fueled by this nature …
provides an alternative to represent the knowledge of any datasets. Fueled by this nature …
Multi-discrete genetic algorithm in hopfield neural network with weighted random k satisfiability
Abstract The existing Discrete Hopfield Neural Network with systematic Satisfiability models
produced repetition of final neuron states which promotes to overfitting global minima …
produced repetition of final neuron states which promotes to overfitting global minima …
Random satisfiability: A higher-order logical approach in discrete Hopfield Neural Network
A conventional systematic satisfiability logic suffers from a nonflexible logical structure that
leads to a lack of interpretation. To resolve this problem, the advantage of introducing …
leads to a lack of interpretation. To resolve this problem, the advantage of introducing …
Amazon employees resources access data extraction via clonal selection algorithm and logic mining approach
Amazon. com Inc. seeks alternative ways to improve manual transactions system of granting
employees resources access in the field of data science. The work constructs a modified …
employees resources access in the field of data science. The work constructs a modified …
[PDF][PDF] Logic Mining in League of Legends.
LC Kho, MSM Kasihmuddin… - … Journal of Science …, 2020 - pertanika2.upm.edu.my
Since its debut in 2009, League of Legends (LoL) has been on a rise in becoming an
extremely favoured multiplayer online battle arena (MOBA) game. This paper presented a …
extremely favoured multiplayer online battle arena (MOBA) game. This paper presented a …
Major 2 satisfiability logic in discrete Hopfield neural network
Existing satisfiability (SAT) is composed of a systematic logical structure with definite literals
in a set of clauses. The key problem of the existing SAT is the lack of interpretability of a …
in a set of clauses. The key problem of the existing SAT is the lack of interpretability of a …