A comprehensive survey on trustworthy recommender systems

W Fan, X Zhao, X Chen, J Su, J Gao, L Wang… - arXiv preprint arXiv …, 2022 - arxiv.org
As one of the most successful AI-powered applications, recommender systems aim to help
people make appropriate decisions in an effective and efficient way, by providing …

Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks

T Hoefler, D Alistarh, T Ben-Nun, N Dryden… - Journal of Machine …, 2021 - jmlr.org
The growing energy and performance costs of deep learning have driven the community to
reduce the size of neural networks by selectively pruning components. Similarly to their …

Spatten: Efficient sparse attention architecture with cascade token and head pruning

H Wang, Z Zhang, S Han - 2021 IEEE International Symposium …, 2021 - ieeexplore.ieee.org
The attention mechanism is becoming increasingly popular in Natural Language Processing
(NLP) applications, showing superior performance than convolutional and recurrent …

Sigma: A sparse and irregular gemm accelerator with flexible interconnects for dnn training

E Qin, A Samajdar, H Kwon, V Nadella… - … Symposium on High …, 2020 - ieeexplore.ieee.org
The advent of Deep Learning (DL) has radically transformed the computing industry across
the entire spectrum from algorithms to circuits. As myriad application domains embrace DL, it …

A modern primer on processing in memory

O Mutlu, S Ghose, J Gómez-Luna… - … computing: from devices …, 2022 - Springer
Modern computing systems are overwhelmingly designed to move data to computation. This
design choice goes directly against at least three key trends in computing that cause …

Matraptor: A sparse-sparse matrix multiplication accelerator based on row-wise product

N Srivastava, H Jin, J Liu, D Albonesi… - 2020 53rd Annual …, 2020 - ieeexplore.ieee.org
Sparse-sparse matrix multiplication (SpGEMM) is a computation kernel widely used in
numerous application domains such as data analytics, graph processing, and scientific …

[图书][B] Efficient processing of deep neural networks

V Sze, YH Chen, TJ Yang, JS Emer - 2020 - Springer
This book provides a structured treatment of the key principles and techniques for enabling
efficient processing of deep neural networks (DNNs). DNNs are currently widely used for …

Sparch: Efficient architecture for sparse matrix multiplication

Z Zhang, H Wang, S Han… - 2020 IEEE International …, 2020 - ieeexplore.ieee.org
Generalized Sparse Matrix-Matrix Multiplication (SpGEMM) is a ubiquitous task in various
engineering and scientific applications. However, inner product based SpGEMM introduces …

I-GCN: A graph convolutional network accelerator with runtime locality enhancement through islandization

T Geng, C Wu, Y Zhang, C Tan, C Xie, H You… - MICRO-54: 54th annual …, 2021 - dl.acm.org
Graph Convolutional Networks (GCNs) have drawn tremendous attention in the past three
years. Compared with other deep learning modalities, high-performance hardware …

A systematic survey of general sparse matrix-matrix multiplication

J Gao, W Ji, F Chang, S Han, B Wei, Z Liu… - ACM Computing …, 2023 - dl.acm.org
General Sparse Matrix-Matrix Multiplication (SpGEMM) has attracted much attention from
researchers in graph analyzing, scientific computing, and deep learning. Many optimization …