A survey on intrusion detection system: feature selection, model, performance measures, application perspective, challenges, and future research directions

A Thakkar, R Lohiya - Artificial Intelligence Review, 2022 - Springer
With the increase in the usage of the Internet, a large amount of information is exchanged
between different communicating devices. The data should be communicated securely …

A survey of deep learning methods for cyber security

DS Berman, AL Buczak, JS Chavis, CL Corbett - Information, 2019 - mdpi.com
This survey paper describes a literature review of deep learning (DL) methods for cyber
security applications. A short tutorial-style description of each DL method is provided …

Anomaly-based intrusion detection from network flow features using variational autoencoder

S Zavrak, M Iskefiyeli - IEEE Access, 2020 - ieeexplore.ieee.org
The rapid increase in network traffic has recently led to the importance of flow-based
intrusion detection systems processing a small amount of traffic data. Furthermore, anomaly …

A survey of data mining and machine learning methods for cyber security intrusion detection

AL Buczak, E Guven - IEEE Communications surveys & tutorials, 2015 - ieeexplore.ieee.org
This survey paper describes a focused literature survey of machine learning (ML) and data
mining (DM) methods for cyber analytics in support of intrusion detection. Short tutorial …

A comprehensive survey on network anomaly detection

G Fernandes, JJPC Rodrigues, LF Carvalho… - Telecommunication …, 2019 - Springer
Nowadays, there is a huge and growing concern about security in information and
communication technology among the scientific community because any attack or anomaly …

Network anomaly detection: methods, systems and tools

MH Bhuyan, DK Bhattacharyya… - … surveys & tutorials, 2013 - ieeexplore.ieee.org
Network anomaly detection is an important and dynamic research area. Many network
intrusion detection methods and systems (NIDS) have been proposed in the literature. In this …

Modeling realistic adversarial attacks against network intrusion detection systems

G Apruzzese, M Andreolini, L Ferretti… - … Threats: Research and …, 2022 - dl.acm.org
The incremental diffusion of machine learning algorithms in supporting cybersecurity is
creating novel defensive opportunities but also new types of risks. Multiple researches have …

Flow monitoring explained: From packet capture to data analysis with netflow and ipfix

R Hofstede, P Čeleda, B Trammell… - … Surveys & Tutorials, 2014 - ieeexplore.ieee.org
Flow monitoring has become a prevalent method for monitoring traffic in high-speed
networks. By focusing on the analysis of flows, rather than individual packets, it is often said …

A one-dimensional convolutional neural network (1D-CNN) based deep learning system for network intrusion detection

EUH Qazi, A Almorjan, T Zia - Applied Sciences, 2022 - mdpi.com
The connectivity of devices through the internet plays a remarkable role in our daily lives.
Many network-based applications are utilized in different domains, eg, health care, smart …

From intrusion detection to attacker attribution: A comprehensive survey of unsupervised methods

A Nisioti, A Mylonas, PD Yoo… - … Surveys & Tutorials, 2018 - ieeexplore.ieee.org
Over the last five years there has been an increase in the frequency and diversity of network
attacks. This holds true, as more and more organizations admit compromises on a daily …