A comprehensive survey of ai-generated content (aigc): A history of generative ai from gan to chatgpt

Y Cao, S Li, Y Liu, Z Yan, Y Dai, PS Yu… - arXiv preprint arXiv …, 2023 - arxiv.org
Recently, ChatGPT, along with DALL-E-2 and Codex, has been gaining significant attention
from society. As a result, many individuals have become interested in related resources and …

Recent advances and applications of deep learning methods in materials science

K Choudhary, B DeCost, C Chen, A Jain… - npj Computational …, 2022 - nature.com
Deep learning (DL) is one of the fastest-growing topics in materials data science, with
rapidly emerging applications spanning atomistic, image-based, spectral, and textual data …

[PDF][PDF] 图卷积神经网络综述

徐冰冰, 岑科廷, 黄俊杰, 沈华伟, 程学旗 - 计算机学报, 2020 - 159.226.43.17
摘要过去几年, 卷积神经网络因其强大的建模能力引起广泛关注, 在自然语言处理,
图像识别等领域成功应用. 然而, 传统的卷积神经网络只能处理欧氏空间数据 …

Graph neural networks: foundation, frontiers and applications

L Wu, P Cui, J Pei, L Zhao, X Guo - … of the 28th ACM SIGKDD Conference …, 2022 - dl.acm.org
The field of graph neural networks (GNNs) has seen rapid and incredible strides over the
recent years. Graph neural networks, also known as deep learning on graphs, graph …

Graph neural networks for natural language processing: A survey

L Wu, Y Chen, K Shen, X Guo, H Gao… - … and Trends® in …, 2023 - nowpublishers.com
Deep learning has become the dominant approach in addressing various tasks in Natural
Language Processing (NLP). Although text inputs are typically represented as a sequence …

A survey on heterogeneous graph embedding: methods, techniques, applications and sources

X Wang, D Bo, C Shi, S Fan, Y Ye… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Heterogeneous graphs (HGs) also known as heterogeneous information networks have
become ubiquitous in real-world scenarios; therefore, HG embedding, which aims to learn …

A comprehensive survey on graph neural networks

Z Wu, S Pan, F Chen, G Long, C Zhang… - IEEE transactions on …, 2020 - ieeexplore.ieee.org
Deep learning has revolutionized many machine learning tasks in recent years, ranging
from image classification and video processing to speech recognition and natural language …

[HTML][HTML] Graph neural networks: A review of methods and applications

J Zhou, G Cui, S Hu, Z Zhang, C Yang, Z Liu, L Wang… - AI open, 2020 - Elsevier
Lots of learning tasks require dealing with graph data which contains rich relation
information among elements. Modeling physics systems, learning molecular fingerprints …

[图书][B] Deep learning on graphs

Y Ma, J Tang - 2021 - books.google.com
Deep learning on graphs has become one of the hottest topics in machine learning. The
book consists of four parts to best accommodate our readers with diverse backgrounds and …

Attention guided graph convolutional networks for relation extraction

Z Guo, Y Zhang, W Lu - arXiv preprint arXiv:1906.07510, 2019 - arxiv.org
Dependency trees convey rich structural information that is proven useful for extracting
relations among entities in text. However, how to effectively make use of relevant information …