Development of metaverse for intelligent healthcare

G Wang, A Badal, X Jia, JS Maltz, K Mueller… - Nature Machine …, 2022 - nature.com
The metaverse integrates physical and virtual realities, enabling humans and their avatars to
interact in an environment supported by technologies such as high-speed internet, virtual …

Multimodal biomedical AI

JN Acosta, GJ Falcone, P Rajpurkar, EJ Topol - Nature Medicine, 2022 - nature.com
The increasing availability of biomedical data from large biobanks, electronic health records,
medical imaging, wearable and ambient biosensors, and the lower cost of genome and …

Traumatic brain injury: progress and challenges in prevention, clinical care, and research

AIR Maas, DK Menon, GT Manley, M Abrams… - The Lancet …, 2022 - thelancet.com
Executive summary Traumatic brain injury (TBI) has the highest incidence of all common
neurological disorders, and poses a substantial public health burden. TBI is increasingly …

Heterogeneous federated learning: State-of-the-art and research challenges

M Ye, X Fang, B Du, PC Yuen, D Tao - ACM Computing Surveys, 2023 - dl.acm.org
Federated learning (FL) has drawn increasing attention owing to its potential use in large-
scale industrial applications. Existing FL works mainly focus on model homogeneous …

Feddc: Federated learning with non-iid data via local drift decoupling and correction

L Gao, H Fu, L Li, Y Chen, M Xu… - Proceedings of the …, 2022 - openaccess.thecvf.com
Federated learning (FL) allows multiple clients to collectively train a high-performance
global model without sharing their private data. However, the key challenge in federated …

Federated learning enables big data for rare cancer boundary detection

S Pati, U Baid, B Edwards, M Sheller, SH Wang… - Nature …, 2022 - nature.com
Although machine learning (ML) has shown promise across disciplines, out-of-sample
generalizability is concerning. This is currently addressed by sharing multi-site data, but …

Towards personalized federated learning

AZ Tan, H Yu, L Cui, Q Yang - IEEE transactions on neural …, 2022 - ieeexplore.ieee.org
In parallel with the rapid adoption of artificial intelligence (AI) empowered by advances in AI
research, there has been growing awareness and concerns of data privacy. Recent …

Federated benchmarking of medical artificial intelligence with MedPerf

A Karargyris, R Umeton, MJ Sheller… - Nature machine …, 2023 - nature.com
Medical artificial intelligence (AI) has tremendous potential to advance healthcare by
supporting and contributing to the evidence-based practice of medicine, personalizing …

Communication-efficient federated learning via knowledge distillation

C Wu, F Wu, L Lyu, Y Huang, X Xie - Nature communications, 2022 - nature.com
Federated learning is a privacy-preserving machine learning technique to train intelligent
models from decentralized data, which enables exploiting private data by communicating …

A survey on federated learning: challenges and applications

J Wen, Z Zhang, Y Lan, Z Cui, J Cai… - International Journal of …, 2023 - Springer
Federated learning (FL) is a secure distributed machine learning paradigm that addresses
the issue of data silos in building a joint model. Its unique distributed training mode and the …