Development of metaverse for intelligent healthcare
The metaverse integrates physical and virtual realities, enabling humans and their avatars to
interact in an environment supported by technologies such as high-speed internet, virtual …
interact in an environment supported by technologies such as high-speed internet, virtual …
Multimodal biomedical AI
The increasing availability of biomedical data from large biobanks, electronic health records,
medical imaging, wearable and ambient biosensors, and the lower cost of genome and …
medical imaging, wearable and ambient biosensors, and the lower cost of genome and …
Traumatic brain injury: progress and challenges in prevention, clinical care, and research
Executive summary Traumatic brain injury (TBI) has the highest incidence of all common
neurological disorders, and poses a substantial public health burden. TBI is increasingly …
neurological disorders, and poses a substantial public health burden. TBI is increasingly …
Heterogeneous federated learning: State-of-the-art and research challenges
Federated learning (FL) has drawn increasing attention owing to its potential use in large-
scale industrial applications. Existing FL works mainly focus on model homogeneous …
scale industrial applications. Existing FL works mainly focus on model homogeneous …
Feddc: Federated learning with non-iid data via local drift decoupling and correction
Federated learning (FL) allows multiple clients to collectively train a high-performance
global model without sharing their private data. However, the key challenge in federated …
global model without sharing their private data. However, the key challenge in federated …
Federated learning enables big data for rare cancer boundary detection
Although machine learning (ML) has shown promise across disciplines, out-of-sample
generalizability is concerning. This is currently addressed by sharing multi-site data, but …
generalizability is concerning. This is currently addressed by sharing multi-site data, but …
Towards personalized federated learning
In parallel with the rapid adoption of artificial intelligence (AI) empowered by advances in AI
research, there has been growing awareness and concerns of data privacy. Recent …
research, there has been growing awareness and concerns of data privacy. Recent …
Federated benchmarking of medical artificial intelligence with MedPerf
A Karargyris, R Umeton, MJ Sheller… - Nature machine …, 2023 - nature.com
Medical artificial intelligence (AI) has tremendous potential to advance healthcare by
supporting and contributing to the evidence-based practice of medicine, personalizing …
supporting and contributing to the evidence-based practice of medicine, personalizing …
Communication-efficient federated learning via knowledge distillation
Federated learning is a privacy-preserving machine learning technique to train intelligent
models from decentralized data, which enables exploiting private data by communicating …
models from decentralized data, which enables exploiting private data by communicating …
A survey on federated learning: challenges and applications
J Wen, Z Zhang, Y Lan, Z Cui, J Cai… - International Journal of …, 2023 - Springer
Federated learning (FL) is a secure distributed machine learning paradigm that addresses
the issue of data silos in building a joint model. Its unique distributed training mode and the …
the issue of data silos in building a joint model. Its unique distributed training mode and the …