Machine learning for anomaly detection: A systematic review

AB Nassif, MA Talib, Q Nasir, FM Dakalbab - Ieee Access, 2021 - ieeexplore.ieee.org
Anomaly detection has been used for decades to identify and extract anomalous
components from data. Many techniques have been used to detect anomalies. One of the …

A review of principal component analysis algorithm for dimensionality reduction

BMS Hasan, AM Abdulazeez - Journal of Soft Computing …, 2021 - publisher.uthm.edu.my
Big databases are increasingly widespread and are therefore hard to understand, in
exploratory biomedicine science, big data in health research is highly exciting because data …

A dependable hybrid machine learning model for network intrusion detection

MA Talukder, KF Hasan, MM Islam, MA Uddin… - Journal of Information …, 2023 - Elsevier
Network intrusion detection systems (NIDSs) play an important role in computer network
security. There are several detection mechanisms where anomaly-based automated …

A survey on machine learning techniques for cyber security in the last decade

K Shaukat, S Luo, V Varadharajan, IA Hameed… - IEEE …, 2020 - ieeexplore.ieee.org
Pervasive growth and usage of the Internet and mobile applications have expanded
cyberspace. The cyberspace has become more vulnerable to automated and prolonged …

Dual-IDS: A bagging-based gradient boosting decision tree model for network anomaly intrusion detection system

MHL Louk, BA Tama - Expert Systems with Applications, 2023 - Elsevier
The mission of an intrusion detection system (IDS) is to monitor network activities and
assess whether or not they are malevolent. Specifically, anomaly-based IDS can discover …

MTH-IDS: A multitiered hybrid intrusion detection system for internet of vehicles

L Yang, A Moubayed, A Shami - IEEE Internet of Things Journal, 2021 - ieeexplore.ieee.org
Modern vehicles, including connected vehicles and autonomous vehicles, nowadays
involve many electronic control units connected through intravehicle networks (IVNs) to …

An effective feature engineering for DNN using hybrid PCA-GWO for intrusion detection in IoMT architecture

SP RM, PKR Maddikunta, M Parimala, S Koppu… - Computer …, 2020 - Elsevier
The entire computing paradigm is changed due to the technological advancements in
Information and Communication Technology (ICT). Due to these advancements, various …

Building an efficient intrusion detection system based on feature selection and ensemble classifier

Y Zhou, G Cheng, S Jiang, M Dai - Computer networks, 2020 - Elsevier
Intrusion detection system (IDS) is one of extensively used techniques in a network topology
to safeguard the integrity and availability of sensitive assets in the protected systems …

A review of recent approaches on wrapper feature selection for intrusion detection

J Maldonado, MC Riff, B Neveu - Expert Systems with Applications, 2022 - Elsevier
In this paper, we present a review of recent advances in wrapper feature selection
techniques for attack detection and classification, applied in intrusion detection area. Due to …

Efficient cyber attack detection on the internet of medical things-smart environment based on deep recurrent neural network and machine learning algorithms

YK Saheed, MO Arowolo - IEEE Access, 2021 - ieeexplore.ieee.org
Information and communication technology (ICT) advancements have altered the entire
computing paradigm. As a result of these improvements, numerous new channels of …