[HTML][HTML] Human-in-the-loop machine learning: a state of the art

E Mosqueira-Rey, E Hernández-Pereira… - Artificial Intelligence …, 2023 - Springer
Researchers are defining new types of interactions between humans and machine learning
algorithms generically called human-in-the-loop machine learning. Depending on who is in …

Transformers in medical imaging: A survey

F Shamshad, S Khan, SW Zamir, MH Khan… - Medical Image …, 2023 - Elsevier
Following unprecedented success on the natural language tasks, Transformers have been
successfully applied to several computer vision problems, achieving state-of-the-art results …

A survey of large language models

WX Zhao, K Zhou, J Li, T Tang, X Wang, Y Hou… - arXiv preprint arXiv …, 2023 - arxiv.org
Language is essentially a complex, intricate system of human expressions governed by
grammatical rules. It poses a significant challenge to develop capable AI algorithms for …

The rise and potential of large language model based agents: A survey

Z Xi, W Chen, X Guo, W He, Y Ding, B Hong… - arXiv preprint arXiv …, 2023 - arxiv.org
For a long time, humanity has pursued artificial intelligence (AI) equivalent to or surpassing
the human level, with AI agents considered a promising vehicle for this pursuit. AI agents are …

Dense reinforcement learning for safety validation of autonomous vehicles

S Feng, H Sun, X Yan, H Zhu, Z Zou, S Shen, HX Liu - Nature, 2023 - nature.com
One critical bottleneck that impedes the development and deployment of autonomous
vehicles is the prohibitively high economic and time costs required to validate their safety in …

What can transformers learn in-context? a case study of simple function classes

S Garg, D Tsipras, PS Liang… - Advances in Neural …, 2022 - proceedings.neurips.cc
In-context learning is the ability of a model to condition on a prompt sequence consisting of
in-context examples (input-output pairs corresponding to some task) along with a new query …

Generating diverse and natural 3d human motions from text

C Guo, S Zou, X Zuo, S Wang, W Ji… - Proceedings of the …, 2022 - openaccess.thecvf.com
Automated generation of 3D human motions from text is a challenging problem. The
generated motions are expected to be sufficiently diverse to explore the text-grounded …

Adaface: Quality adaptive margin for face recognition

M Kim, AK Jain, X Liu - … of the IEEE/CVF conference on …, 2022 - openaccess.thecvf.com
Recognition in low quality face datasets is challenging because facial attributes are
obscured and degraded. Advances in margin-based loss functions have resulted in …

Using deepspeed and megatron to train megatron-turing nlg 530b, a large-scale generative language model

S Smith, M Patwary, B Norick, P LeGresley… - arXiv preprint arXiv …, 2022 - arxiv.org
Pretrained general-purpose language models can achieve state-of-the-art accuracies in
various natural language processing domains by adapting to downstream tasks via zero …

Edge computing with artificial intelligence: A machine learning perspective

H Hua, Y Li, T Wang, N Dong, W Li, J Cao - ACM Computing Surveys, 2023 - dl.acm.org
Recent years have witnessed the widespread popularity of Internet of things (IoT). By
providing sufficient data for model training and inference, IoT has promoted the development …