Intelligent computing: the latest advances, challenges, and future

S Zhu, T Yu, T Xu, H Chen, S Dustdar, S Gigan… - Intelligent …, 2023 - spj.science.org
Computing is a critical driving force in the development of human civilization. In recent years,
we have witnessed the emergence of intelligent computing, a new computing paradigm that …

Challenges and trends of SRAM-based computing-in-memory for AI edge devices

CJ Jhang, CX Xue, JM Hung… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
When applied to artificial intelligence edge devices, the conventionally von Neumann
computing architecture imposes numerous challenges (eg, improving the energy efficiency) …

[HTML][HTML] A compute-in-memory chip based on resistive random-access memory

W Wan, R Kubendran, C Schaefer, SB Eryilmaz… - Nature, 2022 - nature.com
Realizing increasingly complex artificial intelligence (AI) functionalities directly on edge
devices calls for unprecedented energy efficiency of edge hardware. Compute-in-memory …

A twin-8T SRAM computation-in-memory unit-macro for multibit CNN-based AI edge processors

X Si, JJ Chen, YN Tu, WH Huang… - IEEE Journal of Solid …, 2019 - ieeexplore.ieee.org
Computation-in-memory (CIM) is a promising candidate to improve the energy efficiency of
multiply-and-accumulate (MAC) operations of artificial intelligence (AI) chips. This work …

A programmable heterogeneous microprocessor based on bit-scalable in-memory computing

H Jia, H Valavi, Y Tang, J Zhang… - IEEE Journal of Solid …, 2020 - ieeexplore.ieee.org
In-memory computing (IMC) addresses the cost of accessing data from memory in a manner
that introduces a tradeoff between energy/throughput and computation signal-to-noise ratio …

14.3 A 65nm computing-in-memory-based CNN processor with 2.9-to-35.8 TOPS/W system energy efficiency using dynamic-sparsity performance-scaling architecture …

J Yue, Z Yuan, X Feng, Y He, Z Zhang… - … Solid-State Circuits …, 2020 - ieeexplore.ieee.org
Computing-in-Memory (CIM) is a promising solution for energy-efficient neural network (NN)
processors. Previous CIM chips [1],[4] mainly focus on the memory macro itself, lacking …

A dual-split 6T SRAM-based computing-in-memory unit-macro with fully parallel product-sum operation for binarized DNN edge processors

X Si, WS Khwa, JJ Chen, JF Li, X Sun… - … on Circuits and …, 2019 - ieeexplore.ieee.org
Computing-in-memory (CIM) is a promising approach to reduce the latency and improve the
energy efficiency of deep neural network (DNN) artificial intelligence (AI) edge processors …

CAP-RAM: A charge-domain in-memory computing 6T-SRAM for accurate and precision-programmable CNN inference

Z Chen, Z Yu, Q Jin, Y He, J Wang, S Lin… - IEEE Journal of Solid …, 2021 - ieeexplore.ieee.org
A compact, accurate, and bitwidth-programmable in-memory computing (IMC) static random-
access memory (SRAM) macro, named CAP-RAM, is presented for energy-efficient …

Scalable and programmable neural network inference accelerator based on in-memory computing

H Jia, M Ozatay, Y Tang, H Valavi… - IEEE Journal of Solid …, 2021 - ieeexplore.ieee.org
This work demonstrates a programmable in-memory-computing (IMC) inference accelerator
for scalable execution of neural network (NN) models, leveraging a high-signal-to-noise …

PIMCA: A programmable in-memory computing accelerator for energy-efficient DNN inference

B Zhang, S Yin, M Kim, J Saikia, S Kwon… - IEEE Journal of Solid …, 2022 - ieeexplore.ieee.org
This article presents a programmable in-memory computing accelerator (PIMCA) for low-
precision (1–2 b) deep neural network (DNN) inference. The custom 10T1C bitcell in the in …