A survey on graph neural networks in intelligent transportation systems

H Li, Y Zhao, Z Mao, Y Qin, Z Xiao, J Feng… - arXiv e …, 2024 - ui.adsabs.harvard.edu
Abstract Intelligent Transportation System (ITS) is vital in improving traffic congestion,
reducing traffic accidents, optimizing urban planning, etc. However, due to the complexity of …

A conflict risk graph approach to modeling spatio-temporal dynamics of intersection safety

T Wang, YE Ge, Y Wang, CG Prato, W Chen… - … Research Part C …, 2024 - Elsevier
Intersections are among the most hazardous roadway spaces due to the complex and
conflicting road users' movements. Spatio-temporal modeling of conflict risks among road …

Predicting metro incident duration using structured data and unstructured text logs

Y Zhao, Z Ma, H Peng, Z Cheng - Transportmetrica A: Transport …, 2024 - Taylor & Francis
Predicting metro incident duration is crucial for passengers and transit operators to choose
appropriate response strategies. Most existing research focuses on structured data, the rich …

Graph neural networks as strategic transport modelling alternative‐A proof of concept for a surrogate

S Narayanan, N Makarov… - IET Intelligent Transport …, 2024 - Wiley Online Library
Practical applications of graph neural networks (GNNs) in transportation are still a niche
field. There exists a significant overlap between the potential of GNNs and the issues in …

Incident duration prediction through integration of uncertainty and risk factor evaluation: A San Francisco incidents case study

A Salehi, A Babaei, M Khedmati - PloS one, 2025 - journals.plos.org
Predicting incident duration and understanding incident types are essential in traffic
management for resource optimization and disruption minimization. Precise predictions …

Incorporating prior knowledge for domain generalization traffic flow anomaly detection

B Chen, M Fang, HJ Wei - Neural Computing and Applications, 2024 - Springer
Traffic flow anomaly detection is crucial for traffic management and reducing adverse
impacts. However, due to the lack of labeled information for anomaly events and the highly …

Dynamic spatial‐temporal network for traffic forecasting based on joint latent space representation

Q Yu, L Ma, P Lai, J Guo - IET Intelligent Transport Systems, 2024 - Wiley Online Library
In the era of data‐driven transportation development, traffic forecasting is crucial.
Established studies either ignore the inherent spatial structure of the traffic network or ignore …

diffIRM: A Diffusion-Augmented Invariant Risk Minimization Framework for Spatiotemporal Prediction over Graphs

Z Mo, H Xiang, X Di - arXiv preprint arXiv:2501.00305, 2024 - arxiv.org
Spatiotemporal prediction over graphs (STPG) is challenging, because real-world data
suffers from the Out-of-Distribution (OOD) generalization problem, where test data follow …

Graph neural network surrogate for strategic transport planning

N Makarov, S Narayanan, C Antoniou - arXiv preprint arXiv:2408.07726, 2024 - arxiv.org
As the complexities of urban environments continue to grow, the modelling of transportation
systems become increasingly challenging. This paper explores the application of advanced …

[HTML][HTML] МАТЕМАТИЧЕСКОЕ ОБЕСПЕЧЕНИЕ МОНИТОРИНГА ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ ОТ АВТОТРАНСПОРТА В ЗОНЕ РЕГУЛИРУЕМОГО …

ВД Шепелёв, АИ Глушков… - Вестник Южно …, 2024 - cyberleninka.ru
В современных городах вопросы экологии, связанные с ав-тотранспортом, занимают
всё более важное место в системе управления го-родскими транспортными потоками …