Low-rank tensor methods for partial differential equations

M Bachmayr - Acta Numerica, 2023 - cambridge.org
Low-rank tensor representations can provide highly compressed approximations of
functions. These concepts, which essentially amount to generalizations of classical …

An optimal control perspective on diffusion-based generative modeling

J Berner, L Richter, K Ullrich - arXiv preprint arXiv:2211.01364, 2022 - arxiv.org
We establish a connection between stochastic optimal control and generative models based
on stochastic differential equations (SDEs), such as recently developed diffusion …

Learning optimal feedback operators and their sparse polynomial approximations

K Kunisch, D Vásquez-Varas, D Walter - Journal of Machine Learning …, 2023 - jmlr.org
A learning based method for obtaining feedback laws for nonlinear optimal control problems
is proposed. The learning problem is posed such that the open loop value function is its …

Data-driven tensor train gradient cross approximation for hamilton–jacobi–bellman equations

S Dolgov, D Kalise, L Saluzzi - SIAM Journal on Scientific Computing, 2023 - SIAM
A gradient-enhanced functional tensor train cross approximation method for the resolution of
the Hamilton–Jacobi–Bellman (HJB) equations associated with optimal feedback control of …

Hermite kernel surrogates for the value function of high-dimensional nonlinear optimal control problems

T Ehring, B Haasdonk - Advances in Computational Mathematics, 2024 - Springer
Numerical methods for the optimal feedback control of high-dimensional dynamical systems
typically suffer from the curse of dimensionality. In the current presentation, we devise a …

[PDF][PDF] From continuous-time formulations to discretization schemes: tensor trains and robust regression for BSDEs and parabolic PDEs

L Richter, L Sallandt, N Nüsken - Journal of Machine Learning Research, 2024 - jmlr.org
The numerical approximation of partial differential equations (PDEs) poses formidable
challenges in high dimensions since classical grid-based methods suffer from the so-called …

[HTML][HTML] Approximation of optimal control problems for the Navier-Stokes equation via multilinear HJB-POD

M Falcone, G Kirsten, L Saluzzi - Applied Mathematics and Computation, 2023 - Elsevier
We consider the approximation of some optimal control problems for the Navier-Stokes
equation via a Dynamic Programming approach. These control problems arise in many …

[HTML][HTML] Optimal polynomial feedback laws for finite horizon control problems

K Kunisch, D Vásquez-Varas - Computers & Mathematics with Applications, 2023 - Elsevier
A learning technique for finite horizon optimal control problems and its approximation based
on polynomials is analyzed. It allows to circumvent, in part, the curse dimensionality which is …

Learning optimal feedback operators and their polynomial approximation

K Kunisch, D Vásquez-Varas, D Walter - arXiv preprint arXiv:2208.14120, 2022 - arxiv.org
A learning based method for obtaining feedback laws for nonlinear optimal control problems
is proposed. The learning problem is posed such that the open loop value function is its …

Dynamical low‐rank approximations of solutions to the Hamilton–Jacobi–Bellman equation

M Eigel, R Schneider, D Sommer - Numerical Linear Algebra …, 2023 - Wiley Online Library
We present a novel method to approximate optimal feedback laws for nonlinear optimal
control based on low‐rank tensor train (TT) decompositions. The approach is based on the …