Enhancing Collaborative Information with Contrastive Learning for Session-based Recommendation

G An, J Sun, Y Yang, F Sun - Information Processing & Management, 2024 - Elsevier
Session-based recommendation (SBR) aims to exploit the session representation generated
by combining item embedding and session embedding processes to recommend the next …

Simplices-based higher-order enhancement graph neural network for multi-behavior recommendation

Q Hao, C Wang, Y Xiao, H Lin - Information Processing & Management, 2024 - Elsevier
Multi-behavior recommendations effectively integrate various types of behaviors and have
been proven to enhance recommendation performance. However, existing researches …

Fusing temporal and semantic dependencies for session-based recommendation

H Fu, Z Qin, W Xue, G Ding - Information Processing & Management, 2025 - Elsevier
Session-based recommendation (SBR) predicts the next item in user sequences. Existing
research focuses on item transition patterns, neglecting semantic information dependencies …

[PDF][PDF] 基于异质图注意力网络与多特征融合的跨社交媒体用户识别研究

毕达天, 张雪, 孔婧媛, 陈功坤 - 情报学报, 2024 - qbxb.istic.ac.cn
摘要跨社交媒体用户识别对于网络舆情的协同治理以及用户偏好的全方位识别与预测具有重要
的指导意义. 针对现有方法存在数据表达能力弱, 忽略用户信息的动态性和关联性的问题 …

Exploring multi-dimensional interests for session-based recommendation

Y Yang, J Sun, G An - Multimedia Systems, 2024 - Springer
Session-based recommendation (SBR) aims to recommend the next clicked item to users by
mining the user's interaction sequences in the current session. It has received widespread …