Deep learning in human activity recognition with wearable sensors: A review on advances

S Zhang, Y Li, S Zhang, F Shahabi, S Xia, Y Deng… - Sensors, 2022 - mdpi.com
Mobile and wearable devices have enabled numerous applications, including activity
tracking, wellness monitoring, and human–computer interaction, that measure and improve …

A survey on deep learning for human activity recognition

F Gu, MH Chung, M Chignell, S Valaee… - ACM Computing …, 2021 - dl.acm.org
Human activity recognition is a key to a lot of applications such as healthcare and smart
home. In this study, we provide a comprehensive survey on recent advances and challenges …

A multibranch CNN-BiLSTM model for human activity recognition using wearable sensor data

SK Challa, A Kumar, VB Semwal - The Visual Computer, 2022 - Springer
Human activity recognition (HAR) has become a significant area of research in human
behavior analysis, human–computer interaction, and pervasive computing. Recently, deep …

LSTM-CNN architecture for human activity recognition

K Xia, J Huang, H Wang - IEEE Access, 2020 - ieeexplore.ieee.org
In the past years, traditional pattern recognition methods have made great progress.
However, these methods rely heavily on manual feature extraction, which may hinder the …

Deep learning for sensor-based human activity recognition: Overview, challenges, and opportunities

K Chen, D Zhang, L Yao, B Guo, Z Yu… - ACM Computing Surveys …, 2021 - dl.acm.org
The vast proliferation of sensor devices and Internet of Things enables the applications of
sensor-based activity recognition. However, there exist substantial challenges that could …

Deep CNN-LSTM with self-attention model for human activity recognition using wearable sensor

MA Khatun, MA Yousuf, S Ahmed… - IEEE Journal of …, 2022 - ieeexplore.ieee.org
Human Activity Recognition (HAR) systems are devised for continuously observing human
behavior-primarily in the fields of environmental compatibility, sports injury detection, senior …

[HTML][HTML] A state-of-the-art survey on deep learning theory and architectures

MZ Alom, TM Taha, C Yakopcic, S Westberg, P Sidike… - electronics, 2019 - mdpi.com
In recent years, deep learning has garnered tremendous success in a variety of application
domains. This new field of machine learning has been growing rapidly and has been …

Human activity recognition using tools of convolutional neural networks: A state of the art review, data sets, challenges, and future prospects

MM Islam, S Nooruddin, F Karray… - Computers in biology and …, 2022 - Elsevier
Abstract Human Activity Recognition (HAR) plays a significant role in the everyday life of
people because of its ability to learn extensive high-level information about human activity …

A review of multimodal human activity recognition with special emphasis on classification, applications, challenges and future directions

SK Yadav, K Tiwari, HM Pandey, SA Akbar - Knowledge-Based Systems, 2021 - Elsevier
Human activity recognition (HAR) is one of the most important and challenging problems in
the computer vision. It has critical application in wide variety of tasks including gaming …

Multiscale deep feature learning for human activity recognition using wearable sensors

Y Tang, L Zhang, F Min, J He - IEEE Transactions on Industrial …, 2022 - ieeexplore.ieee.org
Deep convolutional neural networks (CNNs) achieve state-of-the-art performance in
wearable human activity recognition (HAR), which has become a new research trend in …