GAN-based anomaly detection: A review
X Xia, X Pan, N Li, X He, L Ma, X Zhang, N Ding - Neurocomputing, 2022 - Elsevier
Supervised learning algorithms have shown limited use in the field of anomaly detection due
to the unpredictability and difficulty in acquiring abnormal samples. In recent years …
to the unpredictability and difficulty in acquiring abnormal samples. In recent years …
[HTML][HTML] Surface defect detection methods for industrial products: A review
Y Chen, Y Ding, F Zhao, E Zhang, Z Wu, L Shao - Applied Sciences, 2021 - mdpi.com
The comprehensive intelligent development of the manufacturing industry puts forward new
requirements for the quality inspection of industrial products. This paper summarizes the …
requirements for the quality inspection of industrial products. This paper summarizes the …
Cflow-ad: Real-time unsupervised anomaly detection with localization via conditional normalizing flows
D Gudovskiy, S Ishizaka… - Proceedings of the IEEE …, 2022 - openaccess.thecvf.com
Unsupervised anomaly detection with localization has many practical applications when
labeling is infeasible and, moreover, when anomaly examples are completely missing in the …
labeling is infeasible and, moreover, when anomaly examples are completely missing in the …
A unified model for multi-class anomaly detection
Despite the rapid advance of unsupervised anomaly detection, existing methods require to
train separate models for different objects. In this work, we present UniAD that accomplishes …
train separate models for different objects. In this work, we present UniAD that accomplishes …
Multimodal industrial anomaly detection via hybrid fusion
Abstract 2D-based Industrial Anomaly Detection has been widely discussed, however,
multimodal industrial anomaly detection based on 3D point clouds and RGB images still has …
multimodal industrial anomaly detection based on 3D point clouds and RGB images still has …
Revisiting reverse distillation for anomaly detection
Anomaly detection is an important application in large-scale industrial manufacturing.
Recent methods for this task have demonstrated excellent accuracy but come with a latency …
Recent methods for this task have demonstrated excellent accuracy but come with a latency …
Destseg: Segmentation guided denoising student-teacher for anomaly detection
Visual anomaly detection, an important problem in computer vision, is usually formulated as
a one-class classification and segmentation task. The student-teacher (ST) framework has …
a one-class classification and segmentation task. The student-teacher (ST) framework has …
Deep learning for unsupervised anomaly localization in industrial images: A survey
X Tao, X Gong, X Zhang, S Yan… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Currently, deep learning-based visual inspection has been highly successful with the help of
supervised learning methods. However, in real industrial scenarios, the scarcity of defect …
supervised learning methods. However, in real industrial scenarios, the scarcity of defect …
Efficientad: Accurate visual anomaly detection at millisecond-level latencies
Detecting anomalies in images is an important task, especially in real-time computer vision
applications. In this work, we focus on computational efficiency and propose a lightweight …
applications. In this work, we focus on computational efficiency and propose a lightweight …
[HTML][HTML] Deep industrial image anomaly detection: A survey
The recent rapid development of deep learning has laid a milestone in industrial image
anomaly detection (IAD). In this paper, we provide a comprehensive review of deep learning …
anomaly detection (IAD). In this paper, we provide a comprehensive review of deep learning …