Approaches on crowd counting and density estimation: a review

B Li, H Huang, A Zhang, P Liu, C Liu - Pattern Analysis and Applications, 2021 - Springer
In recent years, urgent needs for counting crowds and vehicles have greatly promoted
research of crowd counting and density estimation. Benefiting from the rapid development of …

Rethinking counting and localization in crowds: A purely point-based framework

Q Song, C Wang, Z Jiang, Y Wang… - Proceedings of the …, 2021 - openaccess.thecvf.com
Localizing individuals in crowds is more in accordance with the practical demands of
subsequent high-level crowd analysis tasks than simply counting. However, existing …

Rethinking spatial invariance of convolutional networks for object counting

ZQ Cheng, Q Dai, H Li, J Song, X Wu… - Proceedings of the …, 2022 - openaccess.thecvf.com
Previous work generally believes that improving the spatial invariance of convolutional
networks is the key to object counting. However, after verifying several mainstream counting …

A generalized loss function for crowd counting and localization

J Wan, Z Liu, AB Chan - … of the IEEE/CVF conference on …, 2021 - openaccess.thecvf.com
Previous work shows that a better density map representation can improve the performance
of crowd counting. In this paper, we investigate learning the density map representation …

Crowd counting in the frequency domain

W Shu, J Wan, KC Tan, S Kwong… - Proceedings of the …, 2022 - openaccess.thecvf.com
This paper investigates crowd counting in the frequency domain, which is a novel direction
compared to the traditional view in the spatial domain. By transforming the density map into …

Deep learning in crowd counting: A survey

L Deng, Q Zhou, S Wang, JM Górriz… - CAAI Transactions on …, 2024 - Wiley Online Library
Counting high‐density objects quickly and accurately is a popular area of research. Crowd
counting has significant social and economic value and is a major focus in artificial …

Steerer: Resolving scale variations for counting and localization via selective inheritance learning

T Han, L Bai, L Liu, W Ouyang - Proceedings of the IEEE …, 2023 - openaccess.thecvf.com
Scale variation is a deep-rooted problem in object counting, which has not been effectively
addressed by existing scale-aware algorithms. An important factor is that they typically …

To choose or to fuse? scale selection for crowd counting

Q Song, C Wang, Y Wang, Y Tai, C Wang, J Li… - Proceedings of the …, 2021 - ojs.aaai.org
In this paper, we address the large scale variation problem in crowd counting by taking full
advantage of the multi-scale feature representations in a multi-level network. We implement …

Cctrans: Simplifying and improving crowd counting with transformer

Y Tian, X Chu, H Wang - arXiv preprint arXiv:2109.14483, 2021 - arxiv.org
Most recent methods used for crowd counting are based on the convolutional neural
network (CNN), which has a strong ability to extract local features. But CNN inherently fails …

Dynamic mixture of counter network for location-agnostic crowd counting

M Wang, H Cai, Y Dai, M Gong - Proceedings of the IEEE …, 2023 - openaccess.thecvf.com
Crowd counting has attracted increasing attentions in recent years due to its challenges and
wide societal applications. Despite persevering efforts made by the research community …