Approaches on crowd counting and density estimation: a review
In recent years, urgent needs for counting crowds and vehicles have greatly promoted
research of crowd counting and density estimation. Benefiting from the rapid development of …
research of crowd counting and density estimation. Benefiting from the rapid development of …
Rethinking counting and localization in crowds: A purely point-based framework
Localizing individuals in crowds is more in accordance with the practical demands of
subsequent high-level crowd analysis tasks than simply counting. However, existing …
subsequent high-level crowd analysis tasks than simply counting. However, existing …
Rethinking spatial invariance of convolutional networks for object counting
Previous work generally believes that improving the spatial invariance of convolutional
networks is the key to object counting. However, after verifying several mainstream counting …
networks is the key to object counting. However, after verifying several mainstream counting …
A generalized loss function for crowd counting and localization
Previous work shows that a better density map representation can improve the performance
of crowd counting. In this paper, we investigate learning the density map representation …
of crowd counting. In this paper, we investigate learning the density map representation …
Crowd counting in the frequency domain
This paper investigates crowd counting in the frequency domain, which is a novel direction
compared to the traditional view in the spatial domain. By transforming the density map into …
compared to the traditional view in the spatial domain. By transforming the density map into …
Deep learning in crowd counting: A survey
Counting high‐density objects quickly and accurately is a popular area of research. Crowd
counting has significant social and economic value and is a major focus in artificial …
counting has significant social and economic value and is a major focus in artificial …
Steerer: Resolving scale variations for counting and localization via selective inheritance learning
Scale variation is a deep-rooted problem in object counting, which has not been effectively
addressed by existing scale-aware algorithms. An important factor is that they typically …
addressed by existing scale-aware algorithms. An important factor is that they typically …
To choose or to fuse? scale selection for crowd counting
In this paper, we address the large scale variation problem in crowd counting by taking full
advantage of the multi-scale feature representations in a multi-level network. We implement …
advantage of the multi-scale feature representations in a multi-level network. We implement …
Cctrans: Simplifying and improving crowd counting with transformer
Y Tian, X Chu, H Wang - arXiv preprint arXiv:2109.14483, 2021 - arxiv.org
Most recent methods used for crowd counting are based on the convolutional neural
network (CNN), which has a strong ability to extract local features. But CNN inherently fails …
network (CNN), which has a strong ability to extract local features. But CNN inherently fails …
Dynamic mixture of counter network for location-agnostic crowd counting
Crowd counting has attracted increasing attentions in recent years due to its challenges and
wide societal applications. Despite persevering efforts made by the research community …
wide societal applications. Despite persevering efforts made by the research community …